
Proceedings of the 10o Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2004 
Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 
 

Paper CIT04-0457 
 
THE NEGATIVE TRANSMISSIBILITY ISSUE WHEN USING CVFEM IN 
PETROLEUM RESERVOIR SIMULATION – 1. THEORY  
 
Jonas Cordazzo 
jonas@sinmec.ufsc.br 
  
Clovis R. Maliska 
maliska@sinmec.ufsc.br 
 
Antonio F. C. da Silva 
fabio@emc.ufsc.br 
 
Fernando S. V. Hurtado 
fernando@sinmec.ufsc.br 
 
Federal University of Santa Catarina – UFSC  
Computational Fluid Dynamics Laboratory – SINMEC – www.sinmec.ufsc.br   
Department of Mechanical Engineering, 88040-900, Florianopolis, Santa Catarina, Brazil 
 
 
Abstract: Petroleum reservoir simulators were, until recently, developed using finite difference schemes in Cartesian grids. Seeking 
for generality and flexibility, curvilinear grids and unstructured grids started to be employed in the last decade. The Control Volume 
Finite Element Method-CVFEM is one of the technologies employed for unstructured grids of triangular and quadrilateral elements 
in 2D and tetrahedral and hexahedral elements in 3D. This procedure is a control volume method whose control volumes are 
created adding adjacent sub-control volumes of the elements surrounding a node. When deriving the discrete equations for 
multiphase flows, it is common to integrate the governing equations for a single flow and extending them to multiphase flow by 
introducing the mobility. This strategy, called herein CVFEM-S, although results in a scheme that facilitates the implementation 
into existing simulators, present serious implications which are discussed in this work. Starting the paper, a more rigorous 
approach, denoted by CVFEM-M is presented. The concept of transmissibility in structured and unstructured grids, using triangular 
and quadrilateral elements, is also discussed. It is shown that a physical meaning for the transmissibility only exists when the flux at 
the control volume interfaces can be calculated using only two grid-points. Nevertheless, in a number of situations, where the flux is 
calculated using three or even more grid-points the concept of transmissibility is used in a misleading way. It is also shown that 
when using CVFEM with triangular elements disobeying the angular restriction mentioned in the literature, the negative coefficients 
resulting from the discretization do have physical support, since they are not, in fact, “transmissibilities”, as they are referred in the 
literature. 
  
Keywords: reservoir simulation, petroleum, control-volume, finite volume method, finite element method, transmissibility. 

 
 

1. Introduction  
 
The requirement of solving multiphase flows in petroleum reservoirs with complex geometries and, in general, with 

the presence of geological faults, increased the efforts dedicated to the development of methodologies employing 
unstructured grids. Several studies have demonstrated the advantages of using flexible grid in terms of results accuracy 
and computational time. Quandale (1993), for instance, compared the results obtained by different flexible grids in 
some reservoir simulators and concluded that these methods allow a significant computer time saving. The total number 
of grid nodes could be reduced by a factor of four or more with a flexible grid, while keeping the simulation results 
close to those obtained with regular grids. 

The utilization of unstructured grids in conservative methods was proposed, in pioneering works in the area of 
computational fluid dynamics for solving the Navier-Stokes equations, by Baliga and Patankar (1983) using triangular 
elements and Schneider and Zedan (1983), using quadrilateral elements. In such a method the fluid flow properties are 
conserved in each control volume obtained assembling the sub-control volumes belonging to adjacent elements. Thus, 
the geometrical flexibility resembles the Finite Elements Method (FEM). It is named CVFEM (Control Volume Finite 
Element Method) because it employs the shape functions used in FEM and the assembling of the equations is 
equivalent. However, the denomination CVFEM is misleading and conveys the reader to view the methodology as 
being a finite element technique which uses control volumes for the integration of the equations. Actually, it is a finite 
volume methodology, whose only similarity with the finite element method is the use of elements for the domain 
geometrical representation and the shape functions for the variables interpolation. A better denomination would be 
Element-based Finite Volume Method (EbFVM), since it is  simply a finite volume methodology that borrows from the 
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finite element technique the concept of elements and its shape functions (Maliska 2004). In this paper one is keeping the 
CVFEM denomination. 

Since the CVFEM-M, the procedure which obtains the discretized equations integrating the appropriate multiphase 
flow equations, has not yet considered in reservoir simulation, this paper begins with a shortly description of its 
characteristics and potentialities. After that, the CVFEM-S currently used in the petroleum literature is reviewed, as 
well as its equations deduced and discussed. Finally, the negative “transmissibility” which appears when obtuse 
triangles are used is also discussed and defined in new grounds. 

 
 

2. The use of the CVFEM-M and its potentialities in reservoir simulation  
 

In the CVFEM the elements (triangle and/or quadrilaterals for 2D) are formed by the information of the node 
definition (grid nodes) and the connectivity matrix, as in FEM. To obtain the approximate equations, CVFEM integrates 
the divergent form of the partial differential equation over non-overlapping control volumes, what is equivalent to make 
balance conservation on those volumes. Figure 1 shows an example of a grid used in this method, where it is depicted 
one triangular element (formed by nodes 5-3-2) and one quadrilateral element (formed by nodes 3-4-1-2). In this figure 
the control volumes formed around the nodes 3 and 4 are also shown, as well as the integration points (labeled by “x”) 
located over its boundaries. This scheme of control volume construction belongs to the cell vertex category, since the 
center of the control volumes is a vertex of the element. Therefore, the resulting control volumes are formed by portions 
(sub-control volumes) of neighboring elements, and all fluxes at one specified integration point can be calculated using 
only data from the element where the integration point lies in. 

 

 
 

Figure 1. Example of a grid used in the CVFEM  
 

In the procedure advanced in this paper the porous medium properties, like absolute permeability and porosity are 
stored in the center of the elements, differently from other CVFE approaches (Verma, 1997), which store the physical 
properties in the control volumes center. With this strategy, since the integration points lay inside the elements, there is 
no need of any type of averaging, when non-homogeneous media is considered, to calculate the permeability in these 
points, since the elements are homogeneous, i.e. each element has only one value of permeability. On the contrary, 
when properties are stored at the center of the control volumes, the integration point lies over a interface between two 
different media, requiring interpolation. The problems related to the internodal permeability evaluation shown in 
(Desbarats, 1987; Romeu and Noetinger, 1995; Cordazzo et al., 2003a), among others, do not exist in the method 
proposed in this paper. The porosity, by its turn, requires averaging in the transient term with the approach present 
herein.  
 There are at least two reasons why one can say that employing a mean value of porosity is not so troublesome as 
employing a mean value of permeability. First, often the range of variation of porosity values is lesser than the variation 
of permeabilities values in a field. Second, the permeability is a term appearing in Darcy Law, while porosity is not. We 
should remember that the Darcy law is the momentum equation for a porous media. These reasons justify the option for 
a numerical method that uses an average porosity value in the transient term, instead of an average permeability value 
for calculating mass fluxes. Cordazzo et al. (2002) proposed a weighted average porosity as a function of the volume of 
each sub-control volume.  

Following, the CVFEM method is used integrating the two-phase governing equations, the right procedure to attain 
physical consistency. 
 
2.1 The CVFEM-M equations 
 

The two-phase governing partial differential equations to be integrated are given by  
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where p is the pressure, λ is the mobility, φ is the porosity, S is the saturation, B is the volume formation factor, k  is 
the permeability tensor and mq  is the flow-rate per unit of volume, at reservoir conditions. For convenience, the gravity 
and capillary effects were neglected. The subscript indicating the phase (m = w or o) is omitted from now on for the 
sake of simplicity. 

The integration of Eq. 1 in time and over the elemental control volume reads 
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where Vi is the total volume of the control volume i formed by the sum of the sub-control volumes belonging to the 
elements surrounding node i. 

Applying the Gauss divergence theorem to Eq. 2, one obtains 
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where the surface integral is over all the edges of a control volume. 

Since in this method the pressure field is evaluated using the nodal values of each element (3 for triangles and 4 for 
quadrilaterals), the surface integral given in Eq. 3 will result in different discretized equations, depending on the type of 
element chosen. The differences arise on the shape function used, which is linear for triangular elements and bi-linear 
for quadrilateral elements. Despite these differences, there are no difficulties in working with these two kinds of 
elements in a same grid. In this work, however, only triangular elements are used because the discretized equations 
obtained here will be compared with those obtained with the CVFEM-S, which is a method that in reservoir simulation 
has been mostly applied with triangular elements. Nevertheless, the CVFEM-M discretized equations using 
quadrilateral elements can be seen in details elsewhere (Cordazzo et al., 2003b; Hurtado et al., 2004). 

Using the shape functions, the pressure inside the element is given by  
 

( )∑
=

=
3

1

,
i
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where Ni are the linear shape functions given by 

 
( ) ηξηξ −−= 1,1N                                     (5a) 
( ) ξηξ =,2N                                      (5b) 
( ) ηηξ =,3N                                      (5c) 

 
where ξ and η are the local coordinates in the computational domain. The local coordinates allow each element to be 
treated identically, no matter how distorted the element may actually be in terms of the global coordinates. Figure 2 
shows a triangular element in xy and in ξη spaces. In standard FEM this kind of element is called the “isoparametric” 
element (Hughes, 1987). 

 
 

 
 

Figure 2 – Triangular element in xy and in ξη spaces 
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The coordinates of any point within the element can be also expressed in function of the element nodal values, as 

done with the pressure (Eq. 4). In order to determine the pressure gradient it is necessary to calculate the shape 
functions derivatives, xNi ∂∂ /  and yNi ∂∂ / .  Using the chain rule 
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one obtains a system of two equations and two unknowns, where only the derivatives of Ni  in relation to x and y are 
unknowns. Solving this system, one gets 
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where the subscripts 1, 2 and 3 are the nodes shown in Fig. 2, and )det(J  is the Jacobian of transformation, given by 

             
( )( ) ( )( )12131312)det( yyxxyyxxJ −−−−−=                                      (8)             

 
To simplify and facilitate the comparison with the equations available in the literature (Fung et al., 1991), the 

following change of variables is set 
 

231 xxa −=   312 xxa −=   123 xxa −=                             (9a) 

321 yyb −=   132 yyb −=   213 yyb −=                              (9b) 
 

Rewriting the Eq. 7, one can show that 
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where the Jacobian was replaced by twice the triangle area, A, for convenience. 

Substituting Eq. 10 into 3, one obtains 
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The permeability tensor k and the area vector are given, respectively, as 
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and after replacing them in Eq. 11, one obtains  
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One can note that all terms in the right side of Eq. 14, except the mobility λ, are constant inside the elements, since 
either they depend on nodal values only or they are defined by elements, such as the absolute permeability. The 
mobility, of course, is calculated using the nodal values also, but considering the upwind direction. So, the mobility, 
instead of other terms, cannot be simply put outside the integral. As already stated, this integral is evaluated over all the 
edges of the control volumes, where the integration of all terms, including the mobility, can be approximated as the 
product of the mean value and the area at every edge. 

 The sub-control volumes (Scv), in xy and ξη spaces, are presented in Fig. 3. The integration points (“x”) are located 
in their inner surfaces, where the integral in Eq. 14 is approximated. The surface integral over the element boundaries, 
in contrast, will not be regarded, because it vanishes when the global matrix is assembled as the fluxes across the 
element boundaries cancel one another.  

 
 

 
  

Figure 3 – Triangular element, showing its sub-control volumes (Scv) and the integration points (ip) 
 
Thus, in order to obtain the discretized balance equation of Scv1 (in the triangular element of Fig. 3), for instance,   

the integration of Eq. 14 is approximated over the surface of this sub-control volume, where the integration points 1 and 
2 (ip1 and ip2) lie. One can note that the mobility in each integration point multiplies the three nodal values of pressure 
according to Eq. 14, which rewritten compactly for this sub-control volume results in 
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where 12λ  is the mobility of surface AB in Fig. 3 that separates the control volumes 1 and 2, and so on. The terms τ are 
coefficients containing all geometrical and absolute permeability information of the interface. Their superscripts 12 and 
13 are utilized to indicate that they are multiplying the terms (p2 – p1) and (p3 – p1), respectively, while the subscripts 
AB and BC indicate that the term is resulted of the flux balance at the interface of sub-control volumes “1 and 2” and “1 
and 3”, respectively. Furthermore, it is needed to utilize the subscript Scv1 in the Eq. 15, because the terms τ are not 
symmetrical inside the elements, for instance the term 13

BCτ  calculated by mass balance in the Scv1 can be different from 

the term 13
BCτ  resulted of the mass balance in the Scv3. 

 Another way of presenting Eq. 15, which will be used further, is 
 

( ) ( )13113121121 ppppQ SvcSvc −ℑ+−ℑ=                                                (16) 
 
where 
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3.  Considerations about the CVFEM-S procedure 
 

As already mentioned, the CVFEM-S is the application of the general CVFEM ideas to integrate the equations for 
single phase flows. The same equations are then expanded to treat multiphase flows by simply adding the mobility term 
(Forsyth, 1990; Fung et al., 1991; Gottardi and Dall´Olio, 1992). These CVFEM-S methods are already available and 
implemented in some commercial simulators, employing triangular grids (e.g. Quandalle, 1993; Stars User’s Guide, 
2002). The CVFEM-M, on the other hand, integrates the multiphase flow equations, as already stated. The discretized 
equations using CVFEM-S are now developed.  

The flux term of the transport equation for the single-phase problem is given by 
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where the pressure gradient can be obtained by Eq. 10.  
 Substituting the expression of k  (Eq. 12), Sd

r
 (Eq. 13), and the gradient of p (Eq. 10) into Eq. (18), this equation 

becomes 
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 Hence, the discretized balance equation for the sub-control volume 1 in Fig. 3, for example, is given by 
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Using the definition of variable a and b given in Eq. 9, one can show that  
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that, when introduced in Eq. 20, results in 
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The above equation can be conveniently written if the same substitution of variables used in Eq. 9 and 10 is 

performed  
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and, after collecting terms, we can obtain the equation written in the desired form, namely 
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in which the subscripts i assumes values 1 and j the values 2 and 3, resulting in the coefficients T12 and T13, respectively. 
These terms are often called “transmissibilities” in the literature, denomination considered not appropriated as we shall 
see in section 5. However, since this denomination is familiar to the readers, it will be still used in this paper. 
 Similarly, for the other sub-control volumes of Fig. 3,  
 

( ) ( )232321122 ppTppTQ −+−=                                          (26) 
 

( ) ( )322331133 ppTppTQ −+−=                                         (27) 
 

After adding the contribution of all triangles that share the same node, the equation for each control volume can be 
written as 
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where g

ijT  is the global transmissibility between the nodes i and j, and it represents the contributions of the two 
elements sharing the same side. When at least one control volume of i or j is on the external boundary, the global 
transmissibility is only the transmissibility ijT  of the element composed of these nodes.  The total control volume i, Vi, 
in turn, was already defined in Eq. 2. 
 The usual way employed in petroleum reservoir simulation techniques to obtain the discretized equations for 
multiphase flows is just to use Eq. 28, derived for single phase flows, multiplied by the phase mobility ijλ , evaluated at 
upstream conditions.  The resulting equations are given by  

 
( ) ( )1313131212121 ppTppTQ −+−= λλ                            (29) 

 
which are correct only for locally orthogonal grids, where the fluxes can be correctly calculated using two grid points. 
For triangular grids, however, this procedure is not physically supported, since in these grids the fluxes can be correctly 
calculated only if three nodal values are used (cf Eq. 15), each one being multiplied by two values of mobility. This 
conclusion was already pointed out by other investigators (Palagi, 1992; Heinemann et al. 2001). Most probably the 
equations for multiphase flows were obtained in this way to keep the computer code simpler. 

 
 
 

4. Comparison between the CVFEM-S and CVFEM-M equations 
 

This section is devoted for pointing out the difference in the equations obtained using the CVFEM-S and CVFEM-
M methodologies. The transport equation for the sub-control volume 1 in Fig. 3 is used as example. 

Equation 29 represents the mass balance for the sub-control volume 1 according to CVFEM-S. This equation will 
be compared with Eq. 16, deduced using CVFEM-M for the same sub-control volume. The clear difference between 
these formulations is that in the CVFEM-S equation there is only one value of mobility multiplying the pressure 
differences, while in the CVFEM-M, each pressure difference is multiplied by two parameters, as can be seen in the 
equations below. 
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CVFEM-S:        ( ) ( )1313131212121 ppTppTQ −+−= λλ                                        (30) 
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 However, it is easy to show that  
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Therefore, if in Eq. 31, the mobility  λ13, multiplying (p2 – p1), is replaced by the mobility λ12, and if the mobility 

λ12 multiplying (p3 – p1) is replaced by the mobility λ13, Eq. 30, is recovered, but requiring λ12 = λ13, which only 
applicable to single phase flows. Therefore, Eq. 30 is not correct for multiphase flows. In some types of problems the 
results of these two methods may give almost the same results, but there are others where the use of Eq. 30 for 
multiphase flows increases severely the grid orientation effects. The impact of these differences on practical problems is 
demonstrated in a companion paper (Cordazzo et al., 2004). 

 
 
5. Considerations about the negative transmissibilities in CVFEM 

 
It is often claimed in the literature (Fung et al., 1993; Sonier et al., 1993) that negative transmissibilities arise when 

triangles with angles greater than 90º are used in the grid. In such cases it is said that this negative transmissibility has 
no physical meaning and it is recommended not to use a grid with those characteristics. To obey the angular restriction 
reduces enormously the flexibility of the grid generators and, therefore, is undesirable. It is demonstrated in this work 
that the negative coefficients which appear in this situation do have physical meaning and, what is more relevant, they 
no longer can be viewed as transmissibilities. In order to put this issue in clear grounds, some important concepts 
related to the transmissibilities need to be reviewed. To reach this goal, the transmissibilities in triangular grids are 
analyzed. 

 
5.1 The interblock transmissibilities 

 
The transmissibility between two blocks 1 and 2, 12T , is a widely used concept and its origin can be found in the 

calculation of the fluxes through the control surfaces in orthogonal structured grids (Heinemann and Brand, 1989; 
Maliska et al., 2001; Cordazzo et al., 2002), as shown in Fig. 4a. By definition, 12T , when multiplied by a physical 
parameter at the interface and by the pressure difference of these two control volumes, gives the total mass flux crossing 
that interface. As a consequence of the definition, transmissibility is only defined for locally orthogonal grids, as shown 
in Fig. 4a. Nevertheless, this concept is also used even when the total flux through a surface requires the calculation of 
the gradient in two directions, as in locally non-orthogonal grids, as depicted in Fig. 4b. In this case, to use the concept, 
one of the gradients must be neglected. The remaining term now fits the definition, but the flux calculated is, of course, 
not the correct one. 

 
 

      
(a)            (b) 

Figure 4 – Orthogonal (a) and (b) non-orthogonal control volumes  
 

Most reservoir simulation models use two-point flux approximation for any grid and, therefore they use the concept 
of transmissibility. Again, it should be stressed that the fluxes are not correctly calculated. In the other hand, using only 
two grid points in the flux calculation avoids complex stencils and reduces the computational effort, at the expenses of 
precision, when the grid is not locally orthogonal. 

 In these schemes, the mass flow-rate of a component between two adjacent grid-blocks i and j in the discrete form 
of the conservation equations is given by 
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where pλ is the mobility of phase p,  P is the number of phases; k is the absolute permeability; Φ is the phase potential, 
Aij and hij are, respectively, an area where the mass flows through and a suitable length for the gradient determination in 
the surface, both of them determined by the rules of grid construction employed. In Eq. 33, the terms independent of 
pressure and saturation can be grouped in the form 
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λ                                                 (34) 

 
where Tij is called transmissibility which is, therefore, defined as  

    

                                      (35)             
 
The transmissibilities depend only on block geometry and permeability, being therefore independent of either 

pressure, or saturation, or any other variable. They need to be calculated only in the beginning of a simulation if the grid 
is fixed. Their utilization in field scale problems has several advantages, like the easy numerical representation of 
geologic faults. For instance, a sealing fault can be modeled simply setting the transmissibility between the two blocks 
separated by the fault to zero value. Sealing fault constitutes an impermeable linear barrier that will prevent the fluid 
from flowing in reservoir. The transmissibility concept has been also used in different fields of engineering, for instance 
the heat transfer (Bejan, 1993). 

 
 

 
 

Figure 5 – Triangular element composed of three sub-control volumes (Scv) 
 
 
5.2 The transmissibilities in triangular grids 
 
 As already stated, the transmissibility applies when two-point flux approximation schemes are used. For triangular 
elements, as in non-orthogonal grids, the flow-rate must be calculated using the gradients in two directions (involving 
three grid points), as discussed in section 2.1. For instance, the mass flow- rate in the interface between the sub-control 
volumes 1 and 2 in Fig. 5, is given by 
  

( ) ( )⎥⎦⎤⎢⎣
⎡ −+−= 131

13
121

12
1212 ppppQ scvABscvAB ττλ                                               (36) 

        
 

                
              

Mass flow-rate through the face AB  

ij

ij
ijij h

A
kT =  
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and the mass flow-rate between the sub-control volumes 1 and 3 is given by 
 

( ) ( )⎥⎦⎤⎢⎣
⎡ −+−= 121

12
131

13
1313 ppppQ scvBCscvBC ττλ                             (37) 

 
 

             
 

Hence, the mass flow-rate through the face AB cannot be calculated using only the grid-nodes 1 and 2 and, 
therefore, 12

ABτ  and 13
ABτ  in Eq. 36, and 13

BCτ  and 12
BCτ  in Eq. 37 are not transmissibilities. If 13

ABτ  in Eq. 36 is neglected, 
12
ABτ  may be viewed as a transmissibility but, as in non-orthogonal grids, the mass flow is not correctly calculated. 

Opposed as to what happens in non-orthogonal grids, in which quasi-orthogonal situations may occur, allowing neglect 
the cross-derivative term, in regular triangular grid the two terms in Eq. 36 and 37 are always very similar. 

The total mass flow-rate through the inner interfaces of the sub-control volume 1 in Fig. 5 can be obtained by 
summing Eq. 36 and 37. Since the mass fluxes in the areas AB and BC both depend on ( )12 pp −  and ( )13 pp − , one 
can write the total mass flux as 
 

 

( ) ( )13113121121 ppppQ SvcSvc −ℑ+−ℑ=               (38) 

 

        
 
where 
 

1
12

131
12

12112 SvcBCSvcABSvc τλτλ +=ℑ   and   13
113

13
112113 SvcBCSvcABSvc τλτλ +=ℑ                        (39) 

 
 

 Writing the total mass flow-rate as in Eq. (38) may lead to the interpretation that the right hand terms are the mass 
flow rate through face AB and BC, respectively. This induces the definition of transmissibilities 112Svcℑ  and 113Svcℑ  
but, in fact each term mixes up portions of these fluxes in each face. Therefore: 

 
 

 
 
 
 
 
 

 
 

It is important to note that the above conclusion applies for single as well as multiphase flow, since even in a 
single-phase case, when the mobility is reduces to unity in Eq. 36 and 37, the fluxes can be correctly calculated only 
using three grid-points. Therefore, there is no physical impediment  for the coefficients in Eq. 38 to be negative. 
Actually, when using triangles disobeying the angular restriction mentioned claimed in the literature, these negative 
terms must appear (Cordazzo et al., 2004). The true transmissibility factor, when it applies, is always a positive number. 
As already mentioned it is not corrected to interpret these negative coefficients as transmissibilities. 

This is NOT the 
mass flow-rate 

through the face 
BC  

This is NOT the 
mass flow-rate 

through the face 
AB  

Mass flow-rate through the face BC  

are NOT 
TRANSMISSIBILIDADES ! 

113Svcℑ             and           112Svcℑ  
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After these considerations, therefore, it is clear that the process of deriving the discretized equations based on the 

single-phase equations and then extending them to multiphase formulations, as done by the CVFEM-S, is wrong. The 
procedure of adding the mobilities in the discretized equations is not correct because the terms ( )1212 ppT −  and 

( )1313 ppT −  are not fluxes between the volumes ‘1 and 2’ and ‘1 and 3’, respectively, as already shown. 
In order to illustrate the conclusions obtained here, some practical problems are solved in the companion paper 

(Cordazzo et al., 2004). 
 
 
3. Conclusions 
 

In this paper several aspects related to the conservative approach of discretizating the equations using triangular 
grids were addressed. Initially, the process of discretizing the CVFEM-M equations for triangular elements was 
performed, which consists on the integration of the conservative differential equations considering the existence of 
more than one phase. Even though the equations for quadrilateral grids are not deduced here, the process of obtaining 
them is quite similar. It was also shown that this method has several advantages, the most important being the no 
requirement of any permeability averaging properties, since they are storaged in the center of the elements and the 
variables in the center of control volumes. 

These equations were compared with the ones deduced for the Control Volume Finite Element Method (CVFEM) 
as it is found in the petroleum literature, called here CVFEM-S. Based on an analysis of the differences between the two 
methods, we conclude that the procedure used in CVFEM-S is physically not suitable for unstructured grids, though this 
procedure results in straightforward equations that are easily implemented in existing simulators. The impact of 
utilizing each one of these methods in several practical cases is discussed elsewhere (Cordazzo et al., 2004).Finally, the 
concept of transmissibility in structured and unstructured grids was also discussed. It was shown that a physical 
meaning for the transmissibility only exists when the flux in the volume interfaces is calculated using only two grid-
points values. Nevertheless, the transmissibility is, in a number of situations, used in a misleading way, since in that 
cases the flux is calculated using three or more grid-points values.  It was shown that when using triangles disobeying 
the angular restriction mentioned in the literature, the negative coefficients resulting from the discretization do have 
physical support, once they are not, in fact, “transmissibilities”, as they are often referred. 
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