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Abstract. This paper describes a finite-volume method for the numerical solution of turbulent
fluid flows in closed water bodies. The knowledge of the hydrodynamics of these sites is of
utmost importance for determining the capacity of the water body in assimilating and
dispersing any pollutant. The shear stress, acting in the surface due the wind motion causes a
turbulent movement responsible for dispersing the contaminants. Since mass and momentum
conservation and turbulent quantities forms a coupled set of six non-linear partial differential
equations, it is required numerical techniques for solving the hydrodynamics in closed water
bodies. The method uses boundary-fitted coordinates to deal with variable topography of the
water body. The k- model is used for solving the equations for turbulent kinetic energy and its
dissipation. The pressure-velocity coupling for incompressible flows is handled using the
SIMPLEC method, and a colocated arrangement of the variables in the computational grid is
used. The model is evaluated by solving wind driven flows and comparing the results against
available experimental data. The flows are numerically solved employing different methods to
impose the boundary conditions and the results show that the numerical method developed
predicts well turbulent flows in closed water bodies driven by wind currents.
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1 INTRODUCTION

In studying the effects of water pollutants or sedimentation processes in closed water bodies the
knowledge of it’s hydrodynamic behavior is of utmost importance. This is one of the most
determining factor in the capacity of the water body in assimilating and dispersing pollutants and, in a
long run, an important factor in changing it’s bathymetric characteristics. For a lake, for example, the
hydrodynamic pattem is basically determined by the wind currents acting over its surface. The
surface of a lake in a wind day shows surface waves that move toward the wind direction and
transport a large amount of energy. However, this waves causes a very little transport of mass due to
the oscillatory motion, since particles in waves actually moves in orbits. So, when bulk mass
transport must be considered, the wave motion is not of fundamental importance. The shear stress, in
the other hand, acting in the surface due the wind motion causes a turbulent movement that is not of
oscillatory nature and is quite steady, the so called wind driven currents. Therefore, numerical models
able to predict the flow pattemn in closed water bodies such channels, lakes and lagoons are very
useful tools for environmental studies. In this work it is reported the simulation of turbulent wind
driven flows in closed water bodies.

To understand the circulation and pollutant transport in water bodies and also in coastal waters
several numerical techniques and models have been developed in the last two decades. Most
recently 3D numerical models have been implemented with different degrees of complexity in order
to simulate more accurately the physical phenomena involved in this kind of problem, as can be seen
in Fisher', Jin* and Huang and Spaulding’, among others.

In the scope of the present research project Maliska et all* proposed a 2D model for surface
discharge using boundary-fitted grids. Following, Juca et all’, reported a 3D model also using
generalized coordinates. Recently, Juca and Maliska® presented a complete 3D model for thermal
and pollutant dispersion. The later one have been tested against analytical solutions’ and experimental
works®, under laminar and turbulent flows conditions, showing very good results.

The present work reports the last improvements in the numerical model, where the k- € turbulence
model incorporated to the original model is tested under different boundary conditions.

2 THE MATHEMATICAL MODEL

Closed water bodies (or rivers) usually have irregular shapes. Therefore, the most suited
coordinate system to describe their geometry is a self-conforming one, that can be adjusted to the
real water body boundaries, allowing a better description of the domain. If an structured grid is used
to discretize the domain, as in this work, the goveming equations are more easily managed using a
coordinate transformation. Using ¢ to represent any of the dependent variables in the problem, a
general conservation equation can be written as
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where U,V,W are the contravariant components of the velocity given by:
U= wé, +ué, +ud,) J! el

V: (uqu +u2ny + u3 772) Jﬁj
W= (wy, tuy, +uy,)J’

and the oy are the components of the metric tensor and J the jacobian of the coordinate
transformation. As stated, ¢ represents the dependent variables for each equation. For ¢ =1, uy,
U, U3, the mass conservation equation, momentum in x, y and z Cartesian coordinates directions are
recovered, respectively. I" represents the diffusivity transport coefficient, being zero for the mass
conservation equation and equal to the effective viscosity for the Navier-Stokes equations. Also in
Eq. (2) u; represents the mean of fluctuating Cartesian velocities as defined by Rodi® . Details of the
coordinate transformation can be found in Maliska'°.

The P* term is zero for the mass conservation equation. For the Navier-Stokes equations it is
the pressure term given by
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where the subscript indicates partial derivative in the "i-th" Cartesian direction, The source term S is
zero for the mass conservation equation and for the Navier-Stokes equations it is written as

A Lk F T I cile @
SR aig Juef ag 51‘ Juef an 771- }uef a?‘ 7,,*

d v |- av |- v |-

3o 72 388 [ S+ (o 5 |

_,_i I aﬂfi + | J a_W_ G 1 F ?__W__
2 N TS CI W ™ L i i

+




Paulo C.S. Jucé, Clovis R. Maliska.

Eq. (1), representing the system of partial differential equations goveming the channe 1 flow, is
integrated in time and in a 3D elemental control volume. The pressure-velocity coupling is handled
using the SIMPLEC method of Van Doormaal and Raithby'' . Fictitious control volumes are used
for the application of the boundary conditions. The resulting linear system of equations are of the
form:

Ap¢p = Ae¢E+Aw¢W+ AR¢N (5)
+AS¢S +Ad¢D +Af¢};'
+ Ane ¢NE + Ase ¢SE 2 Anw ¢NW
+ Asw ¢SW = Aa‘e ¢DE =t Afe ¢FE
i Adw ¢DW + Afw ¢FW I Adn ¢DN
-+ Aa’s ¢DS o+ Aﬁ’l ¢F’N + Af3 ¢FS + bP
for¢o=1,u1,uz,us.

An equation for pressure is derived from the mass conservation equation using the
SIMPLEC method. Due to the 3D nature of the problem, numerical details and expressions of the
coefficients are not given. These can be found in Marchi'? and Maliska'®. To deal with turbulent
flows ak-¢ turbulence model was implemented. Thus, in Eq. (1) the effective viscosity are defined

by Me= W+ W , where s s, and w  are the effective, turbulent and laminar viscosity,
respectively. The turbulent viscosity is given by

K’ (6)
#=pC,—

where C,, =0.09, p is the density of the water and k and € are the turbulent kinetic energy and its
turbulent dissipation, respectively. The transport equations for k and € also can be obtained from Eq.
(1). For this, ¢ is made equal to k and €. For k and € the P? terms are given by

P peei) @)

and the source terms §? are
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The values for the constants are taken the usual ones recommended in the literature, C . = 1,44
and C,, = 1,92. These are current values used in this kind of flows as reported in Rodi * and Huang
and Spaulding’. The production term B,, in the transformed space is written as
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The diffusivity transport coefficient I" for the k-g turbulence model, see Eq (1), are given by
=M , e M (10)
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where the constants have the values of 6.,=130e0,=1.0

3 BOUDARY CONDITIONS

In an environmental flow we have typically solid boundaries represented by the shoreline and by
the bottom of the water body. At the surface the wind acts over its surface imposing a shear stress,
the main driving force in determining the flow pattem in the water body. For the solid and surface
boundaries no normal flux of momentum is allowed. The turbulent stresses at the solid boundaries,
Gy, are determined by

k,v, 11

o, = 3
lAZb
(%)

where vy, is the component of the velocity parallel to the boundary, k, = 041 is the Von Karman
constant, AZ;, the distance from the boundary to the nearest grid point and Z, a parameter dependent
on the local boundary roughness®, assuming hydraulically smooth flow. Eq. (11), indeed, assumes
that the velocity near the solid boundaries matches the logarithmic law of the wall, and for that,
sufficient mesh resolution must be provided near the boundary. At the surface, the wind stress is
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often calculated by’
crw e prdvz (12)

wind

where C4 is the air-water drag coefficient, p,, the air density and vy it’s velocity, measured at 10
m. height. In the present work, the stresses due to wind are know from experimental data.

The stresses at the top and bottom boundary can be used for applying boundary conditions for
the velocity. As a simple example, if the plane xy is parallel to the surface and bottom, and z is along
the depth, the bottom stress can be approximated by

_ Uy — Uy (13)
Oip = My A
b
where “1” represents the “i-th” Cartesian direction (i=1,2).
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Figure 1 - Turbulent tension sketch at the boundary

Rewriting

[221;0";& J (14)
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which imposes the boundary conditions for the velocity. The turbulent kinetic energy and its
dissipation at solid boundaries are determined following Rodi °, as

v V2 (15)

At the bottom, the resulting shear velocity is



oo [t 1)

i

where v- is the friction velocity. Using the surface stress, the k and £ values at the surface can be
calculated using Eq. (15)

Equations (11) to (16) shows the usual way boundary conditions can be imposed when the
friction velocity at the surface is know from (12) and the log wall rule is employed at the bottom. The
main goal is allow a consistent estimate for the values of k and € at both boundaries, Eq. (15). This
kind of boundary condition were used with success in this model as reported in Juca and Maliska’

An altemative way is also employed in this work in order to test the mathematical model
capabilities and confidence. Suppose the velocities at the surface and bottom are imposed, being
their values known by experimental measurements. These velocities are then used as boundary
conditions for the Navier-Stokes equations, and the stresses needed to evaluate the k and &
boundary conditions, through Eq. (15), can be taken, at the surface, from the derivative of the
velocity profile near this boundaries in each time step. At the bottom boundary the stresses can be
also taken from the velocity profile (VP condition) or, as an alterative way, from the log wall rule
(LWR condition), Eq(11).

4 MODEL VERIFICATION

In order to test the proposed model, the experiments carried out by Baynes-Knapp * and Tsanis
41> were selected. These were choose since they were performed in different experimental devices

and also reports data enough to impose the two kinds of boundary conditions former described .
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Figure 2 - Typical air -water test channel, Baines-Knapp®
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Baynes-Knapp experiments were carried out in an air-water tunnel shown in Figure 2. The
channel was 42 ft long and have a 3 x 3 ft cross-section. Most of the channel was covered, and a 3
hp axial blower were responsible for the air currents generated during the experiments.
Measurements were taken for mean intake air velocities of 3,84 m/s and 6,0 m/s. For each one the
velocity profiles and pressure drop along the tunnel were measured. For further information about the
experiment device and measuring techniques refer to Baines-Knapp .

The experiments performed by Tsanis were made in a conceptually different device, as show in
Figure 3.
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Figure 3 - Experimental method used by Tsanis '“"

In this device the water body is represented by the air volume inside the box. This box (with no
top), move along a stationary surface, which represents the air water interface. During the
experiments the box (Lx = 2,4 m ; Ly = 0,95m) move at a maximum speed of 3 m/s, and have
lateral walls made of pexiglass in order to pemmit the flow visualization and measurements. The
stationary surface were 31 m. long. For further information on the experimental device and measuring
techniques refer to Tsanis '*"°.

The Baines-Knapp experiments are resumed in Table 1, were the surface velocities and stresses
are reported, for two Reynolds numbers, defined by

pou D (16)

As those experiments were performed for typical two dimensional channel flows, the boundary
conditions for the 3D model, in order to adapt the model to this kind of flow, are show in the Figure
4. To recover the 2D flow, symmetry boundary conditions were used for the north and south faces.
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Tablel - Data and experimental results Baines e Knapp

Description Symbol Unit Experiment 1 Experiment 2
Height D m 0,3048 0,3048
Wind Velocity u, m/s 3,901 6.096
Surface friction velocity Usg cm/s 0,6233 0,9416
Surface velocity u cm/s 10,72 15,25
Reynolds number R, # 32700 46500
Normalized surface velocity U/ U # 17,2 16,2
Equivalent roughness height Zi mm 0,3521 0,4795
Zero velocity height Zo/D # 0,69 0,68
East boundary
Topboundary prescribed velocity
Prescribed velocity or stress
North boundary
(symmetry plane)
——— D= L W= 0
South boundary or
_(symmetry plane) T=1 ; w=0
- ,
Lz=D | I
| =
‘, i
=
-, Front boundary
West boundary Prescribed velocity
Prescribed velocity
Figure 4 - 2D flow in a closed channel: boundary conditions.
4 RESULTS
Tsanis '“"* reports velocity profiles in the test section of the channel for low Reynolds numbers,

3000, 5000 and 8000, as defined by Eq(16). Using the log wall rule at the bottom boundary to
estimate the stresses (LWR condition) and also the k and € values, Figure 5 compares the velocity
profiles predicted by the numerical model against the experimental results. For these experiments, in
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Eq

.(11), the value of Zo= 1.4 x 10 * D was used, as sugested by Tsanis.

As shown, the numerical velocity profiles are in a good agreement with the experimental data,

although the low Reynolds can not assure a completely turbulent flow, as stated by Tsanis.
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Figure 5 - Velocity profiles employing the log wall rule at bottom

The same numerical experiments was performed, considering now the velocity for estimating the

bottom stress (VP condition). The results obtained are shown in the Figures from 6 to 8. Each of
these pictures also depicts the effective viscosity profile (l¢ ) obtained by the k-€ model. The

effective viscosity profile proposed by Tsanis'* for this kind of flow is also provided in each figure.

This viscosity profile is defined by

vzgz(%)(z+zb)(n_z+zs) 7

where us = \j% is the surface fiiction velocity and A a constant that resembles the intensity of the

turbulence. Its recommended value is A = 0.35, although it can varies accordingly the Reynolds
number as follows

o, D
Y7

1672 Rs= <10° 020 < A4 £ 050

The constants z, e z, are the characteristic lengt at the bottom and surface, respectively, which
represent the relative measure of the laminar sub layer in the flow. Tsanis recommends the values for

z, and z,

z=220x10*D and z,=060x10*D

10
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Figure 6 - Numerical results for the velocity profile(A: pprofile for u-, = 0,7657 10" cm/s, Eq.(17))
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Figure 7 - Numerical results for the velocity profile(A:u profile for u. = 0,1185 cm/s, Eq.(17))

As in the preceding cases, the velocity profiles are in good agreement with the experimental
data, nevertheless a different approach for applying boundary condition was employed.
The viscosity profiles obtained from Eq.(17) use the surface shear stress calculated from the
velocity profile. Also the constants in the Eq.(17) were taken as indicated and no adjustments were
made in these values, in order to obtain a better agreement between the profiles.

11
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Figure 8 - Numerical results for the velocity profile(A: profile for u., = 0,1783 cn/s, Eq.(17))

The Tsanis experiments denoted the capability of the numerical model for low Reynolds number
flows. The Baines-Knapp’s experiments can now be used to verify the performance at higher
Reynolds numbers.

As Baines-Knapp reports the friction velocity and the velocity at the surface, in this case we opt
by imposing velocity boundary conditions (VP condition) at bottom and surface, and, from the
velocity profile estimate the stresses at these boundaries and so the k and €for these
boundaries. These also allows the comparison between the stresses measured in the experiment
against the one provided by the numerical model. These are also indicated in each figure.
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Figure 9 - Velocity profiles for Rs = 32700.( A; pprofile for the numerical estimated u., = 0,636 cm/s; B\ profile for
experimental v, = 0,6233 cm/s; A and B from Eq(17))
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Figure 10 - Velocity profiles for Rs = 46500.( Aju profile for the numerical estimated u., = 0,8835 cm/s; By profile
for experimental v, = 0,9416 cm/s; A and B from Eq(17))

Again the agreement between the numerical and experimental results are good, except for the
region near the bottom. But, as pointed out by Baines and Knapp, the velocity peak that occurs in
the expenmental velocity profile is due to the presence of a sloping sand bank at the end of the
channel and also to its short length. Also only few measurement points were available near the
bottom.
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By the velocity profiles obtained before, we can estimate the stresses at the bottom and at the
surface. The relation between these stresses, although do not follow a clear tendency as show in
Figure 10, can testify the confidence of the numerical model using both kinds of boundary conditions.
As we can see the same tendency provided by the experimental data is verified in the numerical
results. The experimental data was assembled by Tsanis"* from his experiments and from others.

5 CONCLUSIONS

This work reports numerical results using a boundary-fitted, co-located finite-volume method for
the solution of turbulent fluid flows in closed water bodies. The main goal is the prediction of three-
dimensional dispersion of pollutants in water bodies.

Several comparisons were made against experimental results demonstrating the ability of the
model in well predicting the turbulent fluid flow. The surface and bottom shear stresses also show the
correct trend shown by the experimental results. For the class of 2D flows resolved, the turbulent
viscosity obtained with the k-€ method agree well with that proposed by Tsanis.

Two different methods for applying boundary conditions at the bottom boundary were used, both
demonstrating good agreements with the experimental results. The next step is to add to the equation
system the mass conservation equation for pollutants, allowing the prediction of pollutant dispersion
in water bodies.
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