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Abstract. The estimation of oil production in natural petroleum reservoirs requires the solution of the
coupled flow between the reservoir and the wellbore. The oil, water and gas flow in the well is the
result of the lateral flow coming from the reservoir, obeying different completions, aiming to have an
oil production with almost constant rate along the horizontal well. The multiphase flow is governed
by the Navier-Stokes equations and mass conservation for each phase. Due to the large difference in
spatial scales between the wellbore and the petroleum reservoir domains, the flow in the wellbore can be
considered as one dimensional, taking into account, through friction models, the pressure loss caused by
the lateral mass income of oil, gas and water.

In this paper, the homogeneous flow model is adopted, and a slip between phases is specified accord-
ing to some algebraic correlation available in the literature. The conservation equations are approximated
using a finite volume method employing a staggered grid for the variable arrangement, what renders to
the method robustness and guarantees a strong coupling between pressure and velocity in the wellbore.
Pressures and void fractions are located at the center of the mass conservation control volume, while
velocities are at the surfaces. The block-matrix is solved using a Newton-like method, with the Jacobian
matrix constructed using precise numerical derivatives. Comparisons with available numerical solutions
for two-phase flow are performed, showing that the model performs well and allows the use of larger
time steps than the ones reported in the literature. Examples demonstrating the ability of the method for
solving three-phase flows are also presented. As an overall outcome, it can be said that the developed
method is suitable for taking part in a more general application for estimating oil production in petroleum
reservoirs.
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1 INTRODUCTION

The use of deviated wells has become an attractive alternative, since they can provide a
considerable increase in production. In contrast, the high cost associated with drilling and com-
pletion of wells requires a detailed study in order to find the optimal parameters for their con-
struction. In deviated wells, the drilling is initially vertical and it becomes more deviated from
the vertical as the depth increases until it reaches the desired final position, usually horizontal.
The knowledge of flow characteristics in these wells is essential to predict the fluid dynamic
behavior and define the design parameters for their construction (eg. its optimum length, diam-
eter, type of completion, etc.) and for ensuring maximum production over the life of the well at
a lower cost.

The communication between reservoir and well is given by the well completion holes, which
allow the passage of oil from the reservoir to the wells. The completion of horizontal wells is
a key issue, since there is an optimum lenght for a specified pressure at the well heel.The
pressure field established along the well serves as a boundary condition for the flow solution in
the reservoir, modeled by Darcy equations. The reservoir and well domains are quite different,
exhibiting different geometric and physical scales.

In general, the well model is to be coupled with the reservoir model. Hence, it should
represent the multiphase phenomenon inside the well physically consistently and need to be
robust. From the technological point of view, solving the flow with broader hypotheses, as in
the case of multiphase flows, has become a fundamental need for the design of these wells. If the
coupled multiphase flow is solved in the well and reservoir, it is possible to study the interaction
between the well and the reservoir through numerical solutions and therefore achieve a better
design of the production wells.

The solution of the multiphase flows can be achieved by solving the momentum conservation
equations for each phase. In these models, the so-called multi-fluid models (Ishii and Hibiki,
2006), it is required to specify boundary conditions for each phase interface. Since this is an
impossible task, at least with the nowadays computer resources and methods, one needs to spec-
ify the interfacial mass, momentum and energy transfer, giving rise to the drag, inertial, virtual,
lift and lubrication forces for closing the mathematical model. This approach, however, is too
expensive when the goal is to couple the solution of the flow in the wellbore with the solution
in the petroleum reservoir. In this case one should seek for a robust model with reasonable
computing effort.

There have been several approaches for developing a multiphase model for oil wells. Ouyang
(1998) presents a very detailed review of available models and methods for dealing with each
flow pattern in two-phase flow. Shi et al. (2003) proposes an approach for dealing with three-
phase flow in wellbores with the usage of a drift-flux model. A compositional model has also
being proposed by Shirdel and Sepehrnoori (2009) and Livescu et al. (2009) proposed a black-
oil thermal model.

2 MODEL FORMULATION

The physical problem consists in the solution of the one dimensional isothermal flow for
each phase (gas, oil and water) on a pipe with lateral mass inflow. Therefore, pressure and
velocity fields need to be solved for each phase. The Mass Conservation Equation for a phase p
is given by

∂ (αpρp)

∂t
+
∂ (αpρpup)

∂x
= qp, (1)
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where qp is a mass flux per unit volume that is associated with a possible lateral mass inflow
that comes from an oil reservoir. The volumetric fraction of the phase (αp) is defined by

αp =
Vp
V
, (2)

where Vp is the volume occupied by the phase and V the total volume of a control volume of
interest. Additionally, by the definition of αp, we should have∑

αp = 1. (3)

In order to couple pressure and velocities of each system, it is necessary to solve the momentum
equations. Assuming the same pressure for all phases and noting that, for an advective dominant
flow, diffusive flux in x direction can be neglected and the Momentum Conservation Equation
for phase p becomes

∂ (αpρpup)

∂t
+
∂ (αpρpupup)

∂x
= −∂(αpP )

∂x
− αpρpgx + Ffp, (4)

where Ffp is associated with interphase and wall forces that could affect the momentum of the
system. Bonizzi and Issa (2003) presents a formulation that solves Eq. (4) with different models
for Ffp depending on the multiphase flow pattern.

It is important to observe that, for a gas/oil/water system, if we assume that ρp = ρp(P ),
there are 7 unknowns: αg, αo, αw, ug, uo, uw and P . Since Eq. (1), Eq. (3) and Eq. (4) produce
7 equations, the problem is well posed. However, if one is interested in a faster solution of the
problem, this procedure would result on a rather large non-linear system to be solved, with the
extra effort of modeling complicated interphase forces in each momentum equation. Therefore,
it is mandatory to reduce the number of equations, and this can de done by the use of a drift-flux
model (Hibiki and Ishii, 2003). This model uses the sum of Eq. (4) for all phases and introduces
a mixture velocity, defined as

um =
αgρgug + αoρouo + αwρwuw

ρm
, (5)

where ρm is the mixture density given by

ρm = αgρg + αoρo + αwρw. (6)

Because the drift-flux model is a two-phase model, it is necessary to somehow extend this
procedure for a three-phase system. The procedure is the same as the one shown by Soprano
et al. (2010), i.e., splitting the three-phase system in two sub-systems: a gas/liquid and a
oil/water system, where the liquid phase is the sum of the oil and water phases.

Now, it is possible to assume that the velocity of each phase in the gas/liquid system is a
function of um, given by

ug = um +
ρl
ρm

ugld ,

ul = um −
αg
αl

ρg
ρm

ugld ,
(7)

where the second parcel represents a relative velocity between the phase velocity and the mix-
ture velocity. For the oil/water system, phase velocities are given as functions of ul, through the
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following
uo = ul +

ρw
ρl
uowd ,

uw = ul −
αo
αw

ρo
ρl
uowd .

(8)

The liquid velocity is defined in a similar way as Eq. (5):

ul =
αoρouo + αwρwuw

ρl
, (9)

and
ρl = αoρo + αwρw. (10)

The term ugld is a function of um and it depends on a few extra parameters. Its formula for the
gas/liquid system is given by

ugld =
V gl
d + (C0 − 1)um[

1− (C0 − 1)αg
(ρl−ρg)
ρm

] , (11)

and for the oil/water system,

uowd =
V ow
d + (C ′0 − 1)ul[

1− (C ′0 − 1)αo
(ρo−ρw)

ρl

] . (12)

Here, for the gas/liquid system, C0 is known as the profile parameter and is associated with the
distribution of the phase along the cross-sectional area of the pipe. The term V gl

d is known as
drift velocity and is associated with the slip between phase and the mixture. The same concepts
apply for C ′0 and V ow

d . Those parameters can be modeled and they depend on flow pattern,
geometry and fluid properties.

With well defined relations for calculating phase velocities and noting that they all depend
on the mixture velocity (um), the resulting problem has actually 5 unknowns: αg, αo, αw, P
and um. Now it is possible to reduce the number of equations to be solved. This reduction is
done through the summation of Eq. (4) over all phases. The advantage of this procedure is that
interphase forces terms are canceled and only wall friction forces are left. The resulting system
of equations is

∂ (αgρg)

∂t
+
∂ (αgρgug)

∂x
= qg, (13)

∂ (αoρo)

∂t
+
∂ (αoρouo)

∂x
= qo, (14)

∂ (
∑
αpρp)

∂t
+
∂ (
∑
αpρpup)

∂x
=
∑

qp, (15)

∂ (
∑
αpρpup)

∂t
+
∂ (
∑
αpρpupup)

∂x
= −∂P

∂x
− ρmgx −

f

2D
ρmum |um|. (16)

Because Eq. (3) is an algebraic equation, one of the volumetric fractions can be directly calcu-
lated. Hence, the non-linear system is composed by Eqs. (13)-(16). For convenience, the sum
of the mass balance equations was used instead of the water mass balance equation.
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3 NUMERICAL PROCEDURE

Equations were discretized using the Finite Volume Method. The pressure-velocity coupling
was resolved through a staggered grid where pressure and volume fractions were stored in one
grid (mass conservation control volume) and phase and mixture velocities were located on an-
other grid (Maliska, 2004). A scheme of this procedure is shown in Fig. 1. As well recognized,
this approach renders to the method a strong coupling between pressure and velocities, since
all variables are calculated where they are needed for the fluxes calculation required by the
equation integration.

Figure 1: Staggered grid used in the discretization of the problem.

Residual equations are obtained by an integration of Eqs. (13)-(16) over its control volumes.
Mass balance equations were integrated over the yellow control volumes indicated in Fig. 1 and
the mixture momentum equation was integrated over the control volume indicated by the blue
color.

Due to strong nonlinearities associated to the system of PDEs, the Newton Method is applied
in order to obtain the coupled solution of the set of equations. Hence, it becomes necessary to
construct a Jacobian matrix. The residual function used for Newton iterations for a control
volume P has the following form

RP =
[
Rg
P Ro

P Rm
P Ru

P

]T
. (17)

The jacobian matrix is the built by deriving Eq. (17) with respect to αg, αo, P and um. The
derivatives of the residual functions were calculated approximately through finite difference
formulas. Given a residual function R, its derivative is calculated by

∂R

∂x
=
R(x+ ∆x)−R(x)

∆x
, (18)
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with the increment ∆x being carefully chosen to result in good derivative approximations.
Being the problem one-dimensional, the resulting jacobian matrix has a tridiagonal block

structure, as shown in Fig. 2. Each block of the Jacobian matrix (Fig. 2) has the form shown in
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Figure 2: Structure of jacobian matrix.

Table 1.

West Block (W): Central Block (P): East Block (E):
∂RP

g

∂αW
g

∂RP
g

∂αW
o

∂RP
g

∂PW

∂RP
g

∂uWm
∂RP

o

∂αW
g

∂RP
o

∂αW
o

∂RP
o

∂PW

∂RP
o

∂uWm
∂RP

m

∂αW
g

∂RP
m

∂αW
o

∂RP
m

∂PW

∂RP
m

∂uWm
∂RP

u

∂αW
g

∂RP
u

∂αW
o

∂RP
u

∂PW

∂RP
u

∂uWm




∂RP

g

∂αP
g

∂RP
g

∂αP
o

∂RP
g

∂PP

∂RP
g

∂uPm
∂RP
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∂αP
g

∂RP
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∂αP
o

∂RP
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∂PP

∂RP
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∂uPm
∂RP

m

∂αP
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∂RP
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∂αP
o

∂RP
m

∂PP

∂RP
m

∂uPm
∂RP

u

∂αP
g

∂RP
u

∂αP
o

∂RP
u

∂PP

∂RP
u

∂uPm




∂RP

g

∂αE
g

∂RP
g

∂αE
o

∂RP
g

∂PE

∂RP
g

∂uEm
∂RP

o

∂αE
g

∂RP
o

∂αE
o

∂RP
o

∂PE

∂RP
o

∂uEm
∂RP

m

∂αE
g

∂RP
m

∂αE
o

∂RP
m

∂PE

∂RP
m

∂uEm
∂RP

u

∂αE
g

∂RP
u

∂αE
o

∂RP
u

∂PE

∂RP
u

∂uEm


Table 1: Block components of the Jacobian Matrix.

The computational algorithm for the coupled solution of the equations using Newton’s Method
is summarized as:

1. Initialize variables;

2. Calculate residuals;

3. Build the Jacobian matrix;

4. Solve the linear system J ·∆x = −R;

5. Update variables: x = xo + ∆x;

6. If solution has not converged go to step 2;

7. Update variables from previous time step;

8. If it has not reached final time or steady state go to step 2.
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4 RESULTS

To demonstrate the applicability of the proposed numerical scheme it is solved, firstly, a
gas/liquid flow for numerical validation purposes. Results are compared with two different
sources in the literature, trying to point out aspects in which the method advanced here. Follow-
ing, an oil, gas and water flow is solved, a realistic flow normally encountered in engineering
applications.

4.1 Validation test

The gas/liquid flow solution is compared with two references (Provenzano, 2007; Evje and
Fjelde, 2003), where simple correlations for the drift-flux model in a gas/liquid system is tested.
The problem consists in a horizontal tube with prescribed inflow of both phases in one side and
constant pressure on the other. In this case, values for the profile parameter were C0 = 1.2 and
V gl
d = 0.5m/s for the drift velocity. The inflow in the left side of the pipe is a function of time

and the profiles are shown in Fig. 3. Total simulation time is 175 seconds and the timestep used
was ∆t = 0, 01s. The full problem description, with fluid properties and geometric parameters
can be found in Provenzano (2007).
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Figure 3: Influx profile for each phase as a function of time.

One of the goals with this validation test is to asses the convergence characteristics of the
model when gas phase disappears. When the gas inflow is interrupted, the amount of gas moves
towards the other end of the pipe as a slug, as shown in Fig. 4 and Fig. 5. Numerically, every
pulse, temporal or spatial, poses challenges to the numerical model, since the pulse requires
extremely fine grids in order to be well captured.

Before any comparisons are made, it is important to mention some characteristics of the three
models under consideration. Since Provenzano (2007) also used a finite volume method but
with a segregated solution for pressure-velocity coupling, results were very similar to the ones
of the present work. The work reported in Evje and Fjelde (2003) used a different formulation,
with higher order interpolation and, therefore, the results show a better capturing of the large
gradients present in the pulse for the same mesh and temporal refinement. The advantage of
the proposed method was the possibility of using much larger timesteps during the solution
procedure, since the method solves all equations in a single linear system. Other tests carried
out also demonstrated that one of the strong points of the method is its ability in dealing with
larger time steps, suggesting that the implicit solution for the pressure-velocity coupling is a
viable approach.

4.2 Example test
To demonstrate the ability of the model for solving three-phase flow problems, an example

test is solved. The drift-flux correlations for this three-phase system can be found in Shi et al.
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Figure 4: Results of pressure and gas volumetric fraction for t = 175s and 200 control volumes.
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Figure 5: Results of phase velocity curves for t = 175s and 200 control volumes.

(2003) and Hasan and Kabir (1998). The correlations used for calculating phase velocities are
more complex and depend on a series of parameters, and can be seen in the references just
mentioned. Fluid properties are given as follow:

Phase properties:
Oil density: 800.0 kg/m3

Oil viscosity: 1.5× 10−3 Pa.s
Water density: 1000.0kg/m3

Water viscosity: 0.5471× 10−3 Pa.s
Gas sound speed: 463.25m/s
Gas viscosity: 12.09× 10−6 Pa.s
Reference temperature: 323.0 K

The problem is a 1000m well with 100 control volumes, each one with lateral mass inflow,
simulating a mass flux from the natural petroleum reservoir. The well is nearly horizontal,
with an inclination of θ = 85◦, as represented in Fig. 6. The well diameter is D = 0.3m and
Churchill friction factor was used for the friction term in Eq. (16).
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Boundary conditions that simulate real conditions of a production well were employed, i.e.,
null velocity in the Toe and prescribed pressure in the Heel (Fig. 6) with a value of Ph = 106Pa.
To represent the inflow coming from the reservoir, a typical curve, as shown in in Fig. 7 is used.
Recall that this mass flow enters as source term in the mass balance equations. The initial
conditions of the well is αo = 1, that is, initially filled with oil.

Figure 6: Well scheme.
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Figure 7: Lateral mass influx for each phase along the well.

The model uses an adaptive timestep, being the initial one set to ∆tinitial = 0.1s, with the
maximum time step allowed being equal to ∆tmax = 1000s. The adaptive time step calculation
is based on the maximum variation of the volumetric fractions comparing the current solution
with the one from the previous time level. The new timestep is then calculated by

∆tnew = min

(
∆αexpected

∆αmax
∆told,∆tmax

)
, (19)

where ∆αmax is the maximum volumetric fraction variation in the domain for all phases. In this
test, the problem is solved until it reaches a steady state criteria of 10−5. In this case, the steady
state was reached for tfinal = 30556.3s ≈ 0.35 days.
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Figure 8: Pressure profile along the well in steady state with 100 control volumes.

As previously mentioned, the drift-flux model solves a two-phase flow. It usually treats the
two-phase system as a dispersed phase (gas phase) and a non-dispersed one (liquid phase). In
our case, we also treat the liquid system as two-phase system, with the oil being the dispersed
and water the non-dispersed phase. Note that according to Eq. (7), if we assume that ugld has
the same sign as um, the dispersed phase moves faster that the non-dispersed phase. This also
applies to the oil/water system. Thus, one would expect to usually have

ug > uo > uw

in the case where gravity forces act against the flow. The opposite would occur for a downstream
flow, e.g.,

ug < uo < uw.

The results presented in Fig. 9 show the first situation. However, because gas density is much
smaller than oil and water densities, the difference between oil and water velocities are hardly
noticeable. Moreover, the oil/water drift-flux model takes into account the amount of gas in the
system, which also contributes for the reduction of the slip between oil and water (Shi et al.,
2005). This is the reason why, in steady state, water is accumulated in well toe, since it has the
smaller velocity, its volumetric fraction is greater along the well.
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Figure 9: Results for velocities and volumetric fraction profiles along the well in steady state with 100 control
volumes.
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5 CONCLUSIONS

This work advanced a numerical model for solving the multiphase flow of oil, gas and water
in oils wells using the drift-flux approach, handling the three-phase flow considering a two-
phase flow of gas and liquid and then applying the same strategy for the oil and water phases.
The main goal was to have the model able for being coupled to a petroleum reservoir simulator,
especially in designing horizontal wells with special completion to optimize the oil production.
Therefore, lateral income flow was considered using correlations for taking into account the
additional friction. The numerical strategy of solving the pressure-velocity coupling implicitly
rendered to the method the use of larger time steps than the ones of similar works. Computations
were performed in order to validate the numerical scheme, followed by the solution of a three-
phase flow similar to the ones encountered in real applications.
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