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Abstract. In this paper, the interfacial heat transfer process of spherical and distorted fluid particles is studied through
the Volume-Of-Fluid approach, aiming the development of closure correlations for the two-fluid model in heat and mass
transfer problems. The Nusselt numbers of spherical particles are compared with the usual correlations presented in
literature to validate the numerical model. From the methodology adopted in this work is possible to perform an analysis
of the flow and thermal field around the fluid particles and study the effect of different morphologies on the global heat
transfer coefficients. It is shown that the interfacial heat flux distribution is affected by the particles shape, inducing
changes in the flow and thermal fields around the fluid particle and consequently leading differences in total heat transfer
rate.
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1. INTRODUCTION

Gas-liquid two-phase flows are frequently encountered in the oil, chemical and energy transformation industries. Some
specific applications in oil and gas industry related to flow assurance problems, such as wax deposition, hydrate formation
and corrosion problems by CO2 and HS2 among others, require, in addition to the interfacial momentum transfer, the
detailed modeling of the heat and mass transfer processes between phases. In the chemical industry, the need of these
detailed modeling is necessary in the design of bubble column reactors, as shown in (Kantarci et al., 2005). These flows
usually includes multicomponent systems where mass transfer processes are linked to concentration gradients.

Bubbles of different sizes and shapes are encountered in several flow patterns, ranging from spherical ones in finely
dispersed bubbly flow to Taylor bubbles in slug flow. Even in slug flow pattern, small dispersed bubbles flow within the
liquid slug between two consecutive Taylor bubbles. The simulation of these flows requires precise closure models for
interfacial transfer, even in an one-dimensional approaches, utilized in flow wells or multi-dimensional models, employed
in the modeling of the flow inside pumps, separators and other elevation components and primary oil treatment. For the
case of momentum transfer, several closure relations have been presented in literature (Ishii and Hibiki, 2011; Clift et al.,
1978) including correlations for the the cases of distorted bubbles. On the other hand, in modeling interfacial heat and
mass transfer processes, in the application of the two fluid models for dispersed flow patterns the usual practice is to
employ consolidated correlations based on Re and Pr or Sc dimensionless groups, but considering perfectly spherical
shaped bubbles, which is not always true in several real applications.

Ranz and Marshall (1952) conducted an experimental investigation of the rate of evaporation of spherical liquid drops,
verifying the analogy between heat and mass transfer, and proposing a simple correlation accounting for diffusion and
forced convection of mass and heat transfer. For bubbles, (Lochiel and Calderbank, 1964) proposed correlations using the
boundary layer theory, including the effect of internal circulation, for fluid spheres, spheroids and spherical cap shapes
with mobile and immobile interfaces when Pe(Pe = Re · Sc or Re · Pr ) and Sc are larges. A similar correlation was
proposed by (LeClair and Hamielec, 1971) for spherical fluid particles for different ranges of Pe and Sc. In the work of
Oellrich et al. (1973), the authors propose a correlation for spherical bubbles from the results obtained of the mass transfer
numerical investigation from a previously obtained velocity field. Takemura and Yabe (1998) proposed a correlation based
in the modification of an equation given by (Clift et al., 1978), employing their numerical and experimental results from
the dissolution of gas bubbles in different silicon oils. Furthermore, the heat and mass transfer between phases in bubbly
flow regime is still not fully understood and is a topic of ongoing research (Hayashi et al., 2014; Bothe and Fleckenstein,
2013; Aboulhasanzadeh et al., 2013, 2012; Marschall et al., 2012).

The main difficult in modeling multiphase, multicomponent and non-isothermal flows is the interface tracking and its
definition, as well the transfer mechanism and calculation between the two (or more) distinguished domains. Most of
the recent numerical works exploring the interfacial heat and mass transfer utilizes interface or front tracking methodolo-
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gies, such as Volume-Of-Fluid (Bothe and Fleckenstein, 2013), Level-Set (Wang et al., 2008) and other Front-Tracking
methods (Aboulhasanzadeh et al., 2012). For the interfacial transfer mechanism, several approaches have been proposed
in literature. In the recent paper of Marschall et al. (2012), the authors propose a new method for the calculation of the
interfacial mass transfer fluxes, called the Continuous-Species-Transfer (CST) which is based on an analogy of the the
well-known Continuous-Surface-Force (CSF) Method from Brackbill et al. (1992). Another alternative to calculate the
mass and heat transfer is to utilize the overall energy or mass balance concept, as showed in (Hase and Weigand, 2004)
and (Wang et al., 2008). Recently, some authors proposed multiscale methods, which, in general, are based on the use
of know solutions, based on boundary layer theory, to predict the interfacial transfer in the near interface regions, to save
computational effort in DNS computations (Aboulhasanzadeh et al., 2012, 2013) and to capture the steep concentrations
gradients that appears in the interface (Bothe and Fleckenstein, 2013). Aboulhasanzadeh et al. (2013) showed that the
mutiscale approach presents good agreement when compared to experimental results, in spite of its various assumptions.

Another alternative in modeling interfacial heat transfer is to employ body fitted grids with increased resolution near
the fluid particle surface. Figueroa-Espinoza and Legendre (2010) studied the mass transfer of a spheroidal bubble rising
through a stationary liquid for various flow and geometrical configurations, analyzing the local and global mass transfer.
A huge disadvantage of such approach is the fact that the interface morphology is imposed, while in the reality is a result
of the balance between the inertial, viscous and superficial forces, not allowing the obtained results to be linked with the
adequate dimensionless parameters that describes the phenomena. An important remark in the work of Figueroa-Espinoza
and Legendre (2010) is the discussion about the applicability of mass transfer correlations in the Two-Fluid Model (TFM)
by correction factors due to the deviations from a spherical shape.

The main objective of the present work is to determine, through a detailed modeling of the flow around bubbles with
different interface shapes, the interfacial heat and mass transfer coefficients in non-isothermal multiphase flows and how
the interface shape affects the process and, ultimately, the global heat and mass transfer coefficients, which are needed for
the Two-Fluid Model closure.

2. METHODOLOGY

To accomplish the objective previously defined, the detailed flow structure around individual bubbles was studied
through the Volume-of-Fluid (VOF) method (Hirt and Nichols, 1981). In the VOF method, the phases are defined with
the aid of an indicator function αb advected in a fixed mesh, whose value varies from αb = 0 to αb = 1. If αb = 1 the
value indicates the presence of the fluid particle phase, the continuous phase presence is given by αb = 0 and intermediate
values are treated as interface cells. The interface was geometrically reconstructed by the Piecewise Linear Interface
Construction (PLIC) scheme (Youngs, 1982), improving the fluxes between the mesh cells.

For the momentum equation, the chosen surface stress model was the Continuous Surface Stress (CSS) (Lafaurie et al.,
1994). The phases are modeled as incompressible and viscous in a laminar flow. The simulations presented in this work
were developed in ANSYS FLUENT CFD 15.0.

From the generalized graphical correlation shown in (Clift et al. (1978), p. 27) the bubble shape can be predicted by
the use of some characteristic dimensionless numbers, these are the Eötvös (Eo), Reynolds (Re) and Morton (Mo).

Eo =
g (ρc − ρb) db

σ/db
, (1)

Re =
ρcUtbdb
µc

, (2)

Mo =
gµ4

c (ρc − ρb)
ρ2
cσ

3
, (3)

where ρ is the density, µ is the viscosity, σ is the surface tension, Utb is the bubble terminal velocity, db is the bubble
diameter, whose calculation will be shown later. The subscripts b and c represent, the bubble and the continuous phase,
respectively.

Another important dimensionless number in the heat transfer analysis is the Prandtl number (Pr ) that gives the relation
of momentum and thermal diffusivity,

Pr =
Cpcµc

kc
, (4)

where Cpc is the continuous specific heat capacity and kc is the continuous thermal conductivity.
Along with fore mentioned dimensionless numbers, four other characteristic dimensionless numbers are the density

ratio (γ = ρb/ρc), the viscosity ratio (κ = µb/µc), the thermal conductivity ratio (β = kb/kc) and the specific heat
capacity ratio (λ = Cpb/Cpc)
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In the analysis of the heat transfer between the phases, the results presented in this work will be expressed by the
Nusselt number (Nu),

Nu =
hdb
kc

, (5)

where h is the heat transfer coefficient.
In a heat transfer analysis, the common practice to obtain the heat transfer coefficient h value is to employ a heat

balance at the interface in the following manner,

h =
−kc
S∆T

∂T

∂n̂

∣∣∣∣
interface

(6)

where n̂ is normal vector pointing outward the interface, ∆T is a temperature difference and S is the interfacial surface
area.

However, one of the shortcomings of the interface tracking through implicit methods, such as VOF, Level-Set or
CLSVOF (Coupled Level-Set Volume-of-Fluid), is that the interface position is not exactly defined. Although the mesh
refinement lead to a more accurate capture of the interface position, a problem arises in the explicit calculation of the
interfacial heat fluxes. Since the VOF model treats the two or more phases in a continuous point of view, the high gradients
of both temperatures and fluid transport properties encountered at the interface, are dependent of the volume fraction (or
the level-set function) when evaluated for the mixture. This dependence can be seen in Fig. 1 where the dimensionless
local Nusselt (Eq. (14)), tangential velocity (Eq. (15)) along the interfaces (calculated with αb = 0.1, αb = 0.3 and
αb = 0.5) are given. As seen, the interface position and the velocity profiles show almost none discrepancies, while the
local Nusselt for the three φ values do not coincide at the particles front hemisphere, where the heat fluxes are stronger.
Although the values are not the same, they show the same tendency and are of fundamental importance to support the
physical analysis and conclusions about the global results obtained.
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Figure 1. Dimensionless local Nusselt number Nu∗ and dimensionless tangential velocity ut∗ for the interfaces obtained
for different αb values.

The calculation of the interfacial heat fluxes are also difficult in explicit interface tracking methods, such as Lagrangian
approaches based on immersed boundary methods (Aboulhasanzadeh et al., 2012), where the transport equations are
resolved in a fixed the background mesh and, again, the fluxes at the interface cannot be explicitly calculated, even when
the position of the interface is explicitly determined. None of these methods cannot handle sharp variations of the transport
properties. The only approaches which allows the explicit calculation of interfacial fluxes are those based on the interface
fitted grid.

In addition, when calculating the heat transfer coefficient h (Eq. (6)) a reference temperature is required at the interface,
Ts. Once the temperature variation across the interfacial region is sharp in the VOF method, the interfacial temperature
Ts cannot be easily defined.

In order to avoid the problems described in the above paragraphs, the Nusselt Nu number was obtained from a global
balance, which maintained the particle temperature constant by the inclusion of a source term Sh in the energy conser-
vation equation, via FLUENTs User Defined Functions(UDF). This source term was equal to the total heat transferred in
the previous timestep ∆t, from the bubble to the continuous phase. Equation (7) is the source term added to the energy
conservation equation

Sh = αbρbCP b

(
Tb − T t−∆t

)
∆t

(7)
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where Tb is the bubble temperature defined in the beginning of each simulation run and T t−∆t is the temperature in the
previous timestep. The term αb in Eq. (7) ensures that the source term only exists in the fluid particle domain, seeing that
αb has zero value outside the fluid particle and 0 < αb ≤ 1 inside.

With the aid of this source term, Tb remained constant during the whole simulation time due to the fact that a small
time step ∆t was chosen. As a result, the reference temperature difference(∆T = Tb − Tc) was simply made equal to the
temperature of the bubble Tb minus the temperature of the liquid far from the interface Tc (which is equal to the initial
liquid temperature).

Employing an energy balance in a control volume V.C. large enough to enclose the bubble interface, it was possible
to calculate the total heat Q̇ transferred from the dispersed to the continuous phase through the integration of Sh resulting
in Q̇ =

∫
V.C

ShdV . In this fashion, the global Nusselt number, is defined by

Nuglobal =
Q̇db

S (Tb − Tc) kc
(8)

The analysis of the local Nusselt number along the interfaceNulocal is important in order to understand some phenom-
ena related to local flow pattern as, for instance, the separation point of the boundary layer, behind the fluid particle. The
Nuglobal was calculated through the explicit calculation of the interfacial fluxes assuming an interface position, which is
defined as the iso-surface where αb = 0.1, and the convective heat transfer coefficient h was calculated with Eq. (6), then,

Nu local =
hdb
kc

. (9)

The resulting local Nusselt number was non-dimensionalized by the difference between the maximum and minimum
values of the Nu local number (Eq. (14)) in the analysis presented in this work.

Although the resulting Nu local numbers calculated in this way can be only considered as qualitative parameters, the
same methodology was used in all cases, allowing a qualitative comparison of the local phenomena among the different
cases.

To simulate the process of a rising bubble in a infinite media, the computational domain and the boundary conditions
were defined according to the scheme shown in Fig. 2.
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Figure 2. Computational domain scheme, boundary and initial conditions.

In this work, the governing equations are solved with the reference coordinate system fixed on the fluid particle.
Employing this reference coordinate system, it was possible to reduce the computational domain, once it was only needed
to enclose a relative small domain around the fluid particle, when comparing the computational domain required for a
inertial coordinate system. This allowed for a better mesh refinement, specially near the fluid particle, where the transfer



IV Journeys in Multiphase Flows (JEM2015)
March 23-27, 2015 - Campinas, Brazil

of heat and momentum occurs, enhancing the quality of the results and allowing the bubble to rise for large periods of
time with no physical limitation.

In order to include the effects of the fluid particle acceleration, a source term was added to the momentum conservation
equation via FLUENTs User Defined Functions(UDF). First, an average bubble rise velocity Ubt was calculated, in a
instant of time t as

Ub
t =

∫
αbu dΩ∫
αb dΩ

(10)

where Ω is the computational domain and u is the axial component of velocity ~u. It is important to mention, that the
volumes with 0 < αb ≤ 1 where approximately the ones enclosing the dispersed phase (fluid particle) and the calculations
were performed after each time step was converged. This Ubt was then introduced to the Uinlet as Uinlet = −Ubt in the
top boundary condition (see Fig.2) at the new instant of time t + ∆t. A new average bubble rise velocity Ubt+∆t was
obtained at this time instant. The bubble acceleration in each time step was evaluated as,

abubble =
Ub

t+∆t − Ubt

∆t
(11)

In this way, the source term introduced in the momentum conservation equation Sm = −ρ abubble and was applied to each
volume of the computational domain to remain the bubble stationary.

For the cases of deformed fluid particles, it was necessary to define an equivalent bubble diameter to obtain some of
the dimensionless parameters presented in the equations above. This bubble diameter db was defined as the equivalent
diameter from a spherical bubble, such that

db =
3

√
6Vs
π

(12)

derived from the volume from a sphere (πd3/6) and a calculated bubble volume Vs.
Some studies were made to ensure that the the simulations were performed free of wall effects and to check if the

outflow and inlet boundaries were well positioned, in order to obtain a far field approximation. In this manner, the resulting
computational domain is sketched in the Fig. 2 with its dimensions evaluated as a function of the bubble diameter db. To
simulate the rising bubble, the bubble initial shape was defined as a sphere with diameter db placed 15db away from the
bottom. In the interest to reduce the computational effort, the mesh was subdivided in two different regions, a smaller fine
region with an uniform structured mesh followed by a larger coarse non-uniform structured mesh. The transition between
the regions was made smooth with the help of a spline function.

3. RESULTS AND DISCUSSIONS

3.1 Numerical Simulations

In order to study the effect of the bubble shape on the heat transfer process, it was necessary to develop studies for
situations located in the three distinct regions of the bubble shape regimes: i) spherical; ii) ellipsoidal and iii) ellipsoidal-
cap, as presented (Clift et al. (1978), p. 27). These points are plotted in Fig. 3.
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Figure 3. Simulations performed in this work plotted in the map presented in (Clift et al. (1978), p. 27) for different Pr
values.

From Fig. 3, it is possible to predict the Reynolds Number Re based on the terminal bubble rise velocity Utb and the
bubble shape from a pair of Eötvös Eo and Morton Mo numbers.

Here, the obtained bubble morphologies agreed well with the encountered bubble map, additionally the Re obtained
in the steady state regime suffered little deviations from the expected values.

The simulations were performed for a pair of Eötvös Eo and Morton Mo numbers with for different Pr values:
i) Pr = 0.25; ii) Pr = 0.50; iii) Pr = 0.75; iv) Pr = 1.00; v) Pr = 2.50; vi) Pr = 5.0 and vii) Pr = 10.0.

3.2 Mesh convergence test

A mesh refinement study was made to ensure that simulations were performed free of discretization error and the
computational mesh was capable to capture the boundary layer effects, once the interfacial heat and momentum transfer
occurs in this region.

Based on the fact that higher the Re , thinner is the momentum boundary layer and the Pr number gives the relation
of the momentum and thermal boundary layer in a inverse proportion, i.e. higher the Pr , smaller is the thermal boundary
layer, the mesh convergence study was made for the higher Mo in each Eo – the higher Re in each Eo – with Pr = 10.0.

The number of volumes accounted in the mesh refinement study are those of the fine region (see Fig. 2), Nvol =
(1.1db)(1.1db)/∆l

2, where ∆l = ∆x = ∆y is the finite volume size in the fine region. Below in Fig. 4 is the Nuglobal

values for the different mesh sizes.
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Figure 4. Mesh convergence study for the higher Re in each Eo with Pr = 10.0.

Figure 4 shows that the mesh resolution with ∆l = 0.025db presents little deviation from the finer resolution. There-
fore, the simulations were performed with ∆l = 0.025db.

3.3 Comparison with the literature

From the spherical and almost spherical (for high Re values the morphology slightly deviates from a sphere) cases
presented (Eo = 1.0), the numerical results presented here were compared with correlations found in literature (Ranz
and Marshall, 1952; Lochiel and Calderbank, 1964; LeClair and Hamielec, 1971; Oellrich et al., 1973; Takemura and
Yabe, 1998). This comparison is shown in Fig. 5 for Pr = 10.0 through the Nusselt number Nuglobal plotted against the
obtained Re and Pe (Pe = RePr ) numbers.
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Figure 5. Nusselt Nuglobal values against Reynolds Re and Pe numbers obtained in the present work from correlations
found in literature for Pr = 10.0.

From Fig. 5 it is possible to observe the behavior of the proposed equations found in literature and the values obtained
in this work for Pr = 10.0 and how they deviate from one to another. It also shows that an increase in the Reynolds Re
number provokes an increase in the Nusselt Nuglobal number and Nuglobal → 2.0 for Re→ 0, the value for pure diffusive
heat transfer.

The (Ranz and Marshall, 1952) correlation present a large deviation from the results of this work, the explanation lies
in the fact that the correlation was proposed for drops and not for bubbles. However, it is show here due to its simple
form, composed by two additive terms, one for diffusion and other for the forced convection heat or mass transfer. The
correlation proposed by (Lochiel and Calderbank, 1964) shows certain agreement when Pe is large, since the equation
apply only for high Pe and Pr (Sc). On the contrary, the equation given by (Oellrich et al., 1973) agrees well in the
low Pe and low Re region, since the correlation is suitable for this range of Re values (Clift et al., 1978). The values
presented here show a good agreement with the correlations of LeClair and Hamielec (1971) due to the its applicability
until Re < 100. For the Nuglobal values calculated from Takemura and Yabe (1998), the results presents very good
agreement in the range where the use of the correlation is presented, Re < 100 and Pe > 1.

The results presented in section 3.2and here, specially the agreement of the results with Takemura and Yabe (1998),
endorses the fact that the methodology utilized in the present work captures well the interfacial and can be used for more
sophisticated studies.
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3.4 Local Heat Transfer

The local analysis is made with results of the red points of Fig. 3, which obtained similar Re number, for different
Eo numbers, in order to see the effect of distortion and the fluid thermal properties (Pr ) in the interfacial heat transfer
around the fluid particle. Therefore, Fig. 7 shows the fluid particle shape, temperature and the external flow streamlines,
after reaching the steady-state regime, for four different configurations and three Prandtl Pr numbers (Pr = 0.25, Pr =
1.0, Pr = 10.0). The morphologies can be classified as the following: i) spherical shape (Eo = 1.0, log(Mo) =
−5.29); ii) ellipsoidal shape (Eo = 5.0, log(Mo) = −3.86 and Eo = 10.0, log(Mo) = −3.21); and iii) ellipsoidal-cap
shape (Eo = 40.0, log(Mo) = −1.5).

Figure 6. Fluid particle shapes, temperature contours and the streamlines around it, after reaching the steady-state regime
three Prandtl Pr numbers (Pr = 0.25, Pr = 1.0, Pr = 10.0). The images are not in scale.

Figure 6 gives a visual insight of how the deformation (deviation from the spherical shape) affects the temperature
field and flow around the fluid particle. As the deformation increases (higher Eo) a recirculation zone starts to appear in
the rear.

The effect of the Pr number on the temperature around the bubble can be noticed by the thinning of the temperature
distribution as the Pr increases, since it gives a relation between the momentum and thermal boundary layer thickness.
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On the rear, for the situations where the fluid particle is spherical and elliptical, the temperature distribution thins in
the radial direction and enlarges in the axial direction, as seen by the contour lines. However, for Eo = 40.0, the contour
lines present a different behavior, a temperature peak begins to appear near the point where the curvature changes due to
the recirculation zone.

The changes on the temperature field can be easily understand by seeing the situation by the means of the Pe number,
the ratio of convective and diffusive transport. Since the dimensionless number is given by the product of Re and Pr ,
as Pr increases, the Pe also increases. Then, the convective heat transport starts to be dominant, meaning that the
energy transport becomes to more dependent of the velocity field around the fluid particle, explaining the changes on
the temperature distribution. This effect is more evident for the situation with Eo = 40.0 and Pr = 10.0, where the
temperature distribution on the rear is highly affected by the recirculation zone when comparing to the other cases.

In order to show how the deviation from a spherical shape and the velocity field near the interface affects the heat
transfer, Fig. 7 gives the normalized Nusselt number Nu∗ and normalized tangential interface velocity ut∗ around the
bubble with the aid of the dimensionless distance s∗, these denoted by:

s∗ =
s

smax
; (13)

Nu∗ =
Nu local −Numin

Numax −Numin
; (14)

ut
∗ =
|utlocal|
utmax

; (15)

where ~t is the tangential interface vector of bubble interface and the subscripts loc, min and max refers respectively to the
local, minimum and maximum local values.
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Figure 7. Normalized tangential interface velocity ut∗ and Nusselt number Nu∗ around the bubble. These profiles were
extracted for the situations given in Fig. 6 with Pr = 10.0.

From Fig. 7, it is clearly visible changes in the s∗ vs. ut∗ and Nu∗ vs. ut∗ plots as the fluid particle is distorted from
spherical (Eo = 1.0) to ellipsoidal (Eo = 5.0) and ellipsoidal-cap (Eo = 40.0). The s∗ vs. ut∗ plot, shows two distinct
regions in all situations, separated by a point where ut∗ is maximum. As Eo increases, this peak start to moves down to
the rear portion of the fluid particle and ut∗ profiles of this portion tends to show lower values. For Eo = 40.0, the ut∗

profile in the rear portion gives negative values, due to an recirculation region.
The changes in the s∗ vs. ut∗ are reflected in the s∗ vs. Nu∗ curves. For Eo = 1.0, where the fluid particle is

spherical, the local interfacial heat transfer decays smoothly from a maximum value in the bubble front (s∗ = 0.00) to a
minimum in the rear end (s∗ = 1.00) and there is no large contrast dividing the front and rear portion as the ut∗ profile.
Increasing the Eo, Eo = 5.0, the Nu∗ profile changes, showing now a transition region from s∗ ≈ 0.40 to s∗ ≈ 0.70,
where the interfacial heat transfer is increased in the front region and decreased in the rear part, as expect from the ut∗

curve. In the last situation, Eo = 40.0, again there is a transition in the Nu∗ profile from s∗ ≈ 0.50 to s∗ ≈ 0.70, yet
now in the rear part, the fluid recirculation makes the interafacial heat transfer achieve a minimum value near s∗ ≈ 0.70
to then increase.

3.5 Total Heat Transfer

The results from the sections 3.2and 3.3brings reliability on the model hereby implemented. Thus, it can be used to
study the situation of deformed fluid particles. Fig. 8 shows the effect of the Eötvös Eo number in the Nu vs. Re curve
for different Pr numbers.
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Figure 8. Effect of the Eötvös Eo number in the Re vs. Nu curve for different Pr numbers.

As expected, the increase in the Reynolds Re number provokes an increase in the Nusselt Nu number and Nu → 2.0
for Re → 0, the value for pure diffusive heat transfer. The effect of the Pr in the Fig. 8 creates an augmentation of
the interfacial heat transfer, once this dimensionless parameter gives the relation beetween the thermal and momemntum
boundary layer as commented in section 3.2. . Besides the increase in the interfacial heat transfer, Fig. 8 also shows that the
increase of the Pr number reduces the impact of the deformation, here seen by the Eo lines. As Pr increases, these lines
begin to become nearer, demonstrating that the effect of Pr number is not linear for some fluid particle morphologies.

In order to see this effect, the results were compared through another curve, Nu vs. Pe , given by Fig. 9.
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Figure 9. Effect of the Prandtl Pr number in the Pe vs. Nu curve for different Eo numbers.

Figure 9 shows that the Pe vs. Nu lines begin to coincide as the Eo number increases, i.e., the fluid particle defor-
mation, from spherical to spherical-cap. This same behavior is encountered the work of Oellrich et al. (1973), where
for spherical bubbles the Sc vs. Pe values do not coincide for different Sc numbers, giving an upper (Sc → ∞) and
a lower (Sc → 0) limit. From the results showed in section 3.4 , this effect is explained by boundary layer separation
location and the formation of the recirculation zone behind the particle, all due to the interfacial changes.

To quantify the fluid particle deformation, the surface ratio Sratio (Eq. (16)) is employed,

Sratio =
S

Ssphere
, (16)

which is the relation of the obtained surface area S with an iso-surface of αb = 0.1 (see Fig. 1) in the steady state with
the surface area of a sphere (Ssphere = πdb

2). In this manner, Figure 10 illustrates how the balance of the inertial, viscous,
and superficial forces affects the interfacial surface, i.e., the contact area between the fluid phases.
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Figure 10. Sratio vs. Re values for different Eo numbers.

The illustration above indicates that increase of the interfacial surface is higher when the superficial forces are not
and c dominant (higher Eo) cannot be neglected in the heat or mass transfer, since there is a considerable variation in the
values. This effect needs to be introduced in classical the Two-Fluid Model, since it is usual to express the interfacial heat
transfer q′′i as,

q′′i = ha′′′i ∆T, (17)

where a′′′i is the interfacial area density. The interfacial area density a′′′i is the variable that gives the information about
the fluid particle interface. This value is usually given assuming that the dispersed phase is spherical shaped, specially
when modeling bubbly flows, so for a spherical fluid particle,

a′′′i = αb
Sb
Vb

= αb
πd2

b

πd3
b/6

=
6αb
db

. (18)

However, the fluid particle may not be spherically shaped in several real applications. To introduce this factor in Eq. (18),
the following correction factor fχ(Re,Eo) is introduced,

a′′′i = αb
S

Vb
= αb

S

Vb

Sb
Sb

= αb
Sb
Vb

S

Sb
= αb

Sb
Vb
Sratio =

6αb
db

Sratio =
6αb
db

fχ(Re,Eo). (19)

where, fχ(Re,Eo) = Sratio.
For this reason, rewriting Eq. (17) and taking the convective heat transfer coefficient as h = Nu(Re,Eo,Pr) kc/db,

the interfacial heat tranfer q′′i can be expressed as,

q′′i = Nu(Re,Eo,Pr)
kc
db

6αb
db

fχ(Re,Eo)∆T, (20)

which computes the effects presented in Figs. 8 and 10.

In the interest investigate these two effects, Fig. 11 gives the value of q′′i /∆T , taking the product
kc
db

6αb
db

as unity, for

different Eo and Pr numbers.
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Figure 11. value of q′′i ∆T , with
kc
db

6αb
db

= 1.0W/m3K, for different Eo and Pr numbers.

As it can be seen, when accounting the changes in the interfacial surface, the fluid particle deformation increases the
heat transfer. However, this effect of the deformation tends to decrease as Pr increases. The reason for that particular
behavior is explained by the analysis presented in Fig. 8 and 9, where for low Eo, the Pr varies in a non-linear fashion,
then making the lower Eo curves to gather into a single curve.



R.F.L., Cerqueira, E.E., Paladino and C.R, Maliska
A Computational Study of the Interfacial Heat Transfer in Spherical and Deformed Fluid Particles

4. CONCLUSIONS

In this work the interfacial heat transfer of spherical and distorted fluid particles was studied with the Volume-Of-
Fluid (VOF) model available in ANSYS CFD FLUENT 15.0. The governing equations were solved for a moving reference
frame, including the effect of the bubble acceleration trough a source term in the momentum conservation equation,
implemented via FLUENTs User Define Functions (UDF).

It is shown that is difficult to evaluate temperatures and fluxes in the interface, due to shortcoming of the interface
tracking through implicit methods, although the values obtained in this fashion present qualitative results. In order to
compensate for this fact, the temperature in the dispersed phase (fluid particle) is maintained constant through an energy
source term added via FLUENTs User Define Functions (UDF). With the aid this source term is possible to calculate the
interfacial heat transfer and to develop studies from different bubble regimes.

The methodology utilized in the present work capture well the interfacial transfer, once the mesh refinement study
shows that the boundary and momentum boundary layer are captured and the dimensionless values obtained (Nu and
Re) agree well with correlations encountered in the literature(Ranz and Marshall, 1952; Lochiel and Calderbank, 1964;
LeClair and Hamielec, 1971; Oellrich et al., 1973; Takemura and Yabe, 1998) for spherical fluid particles.

Through a detailed modeling and analysis of the flow around fluid particles with different shapes it was possible to
possible to perceive changes in the thermal and flow behavior as the deviation from a spherical shape increases.

The results show that the deformation, not accounting the changes in interfacial contact area, decreases the total
interfacial heat transfer and the Nu or Sh values are independent of Pr or Sc values when the fluid particle is distorted.

In order to investigate the effects of the changes in the interfacial contact area due the distortion in the heat transfer,
the results are presented in the Two-Fluid Model (TFM) perspective. In this point of view, the fluid particle deformation
increases the interfacial heat transfer with this effect decreasing as Pr increases.
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