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Abstract. In this work is presented a numerical formulation for reservoir simulation in which the 
element-based finite volume method (EbFVM) is applied to the discretization of the differential 
equations that describe macroscopic multiphase flow in petroleum reservoirs. The spatial discre-
tization is performed by means of quadrilateral unstructured grids, which are adequate for repre-
senting two-dimensional domains of any complexity in an accurate and efficient manner. For 
dealing with the inherent geometric complexity, all operations related to the discretization are 
performed at element level in a way that resembles the finite element method. However, the 
EbFVM approach preserves also the essence of conventional finite volume method, that is, the 
construction of approximate equations that guarantee the conservation of physical quantities at 
discrete level. One of the most promising aspects of the numerical formulation presented herein is 
the possibility of eliminating the so-called grid orientation effect, which is an abnormal depend-
ence of numerical solutions on the grid geometry, which is present in all customary numerical 
methodologies used in reservoir simulation. As showed in several examples, an interpolation 
scheme consistent with the multidimensional character of the flow is the key factor for eliminating 
grid orientation effect. Other application examples are presented also for evaluating other as-
pects of the proposed numerical formulation. 
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1. INTRODUCTION 
 

Nowadays one of the major challenges for reservoir simulation is the incorporation of the 
very detailed information coming from geological reservoir models into the numerical simula-
tions. Thanks to the accelerated improvement in geosciences techniques, accurate reservoir static 
models including detailed description of all geological objects are currently available. Unfortu-
nately, most of the discretization methods commonly used in reservoir simulation, mainly based 
on structured grids, are not capable to represent the detailed geometry of such geological objects 
or other complicated entities such as horizontal wells. As pointed out for several authors (Fung et 
al., 1992; Verma & Aziz, 1997; Heinemann & Heinemann, 2001) the key solution for that issue is 
the use of unstructured grids for representing the reservoir geometry into the dynamic models. 

Although the use of unstructured grids for fluid flow simulation in complex geometries is 
currently a customary practice in several engineering areas, still little effort has been made in the 
reservoir simulation area for taking advantage of all the potential of unstructured grids. A large 
amount of research has been made with Voronoi or PEBI grids (Heinemann & Brand, 1989; 
Palagi & Aziz, 1992), which are locally orthogonal unstructured grids. This geometric feature 
allows using undemanding numerical procedures, similar to those habitually employed with 
structured grids, at least for isotropic porous media. A generalization of Voronoi grids was pro-
posed in order to overcome that restriction, imposing special constraints on the grid generation. 
Unfortunately, those constraints are difficult to satisfy for complex geometries and highly anisot-
ropic and heterogeneous media.  

The so-called control-volume finite element method (CVFEM), developed at first for solving 
the Navier-Stokes equations, is the best alternative for discretizing conservation equations arising 
in reservoir dynamical models. Unstructured element grids can be used to represent arbitrarily 
complex geometries without regarding on the heterogeneity or anisotropy of the medium. In 
reservoir simulation, such discretization method has been applied mainly with triangular grids 
(Forsyth, 1990; Gottardi & Dall’olio, 1992; Fung et al., 1992; Fung et al., 1994). Numerical 
approximations used with this type of grids permit arranging the discretized equations in a form 
similar to those arising from conventional finite difference methods. Although this characteristic 
is advantageous at first, because it facilitates the implementation of CVFEM formulations into 
existing reservoir simulators, several drawbacks arises from that practice. As discussed by Cor-
dazzo et al. (2004a), some of the approximations considered in those formulations are question-
able for multiphase flow and lead to erroneous interpretations of the coefficients on the discretiza-
tion equations. As a result, numerical simulations can exhibit non-physical behavior in several 
situations, as showed in Cordazzo et al. (2004b). 

Differently from the classical finite element approach, local and global mass conservation can 
be directly enforced in the CVFEM approach, because of the construction of the discretized equa-
tions following the philosophy of the finite volume method. That is, discretized equations repre-
sent physical balances over control volumes, which are formed by element contributions. Because 
of this, we prefer to designate methods of that nature as element-based finite volume methods 
(EbFVM), since elements are used only as supporting geometric entities and no mathematical 
foundation of the finite element method is actually considered for discretizing the differential 
equations (Maliska, 2004).  

In this work is described an EbFVM formulation for reservoir simulation considering quadri-
lateral unstructured grids. Differently from existent formulations on triangular grids, any attempt 
of adapting discretized equations to conventional forms is discarded. Thus, for example, the 
concept of transmissibility is completely abandoned. Most of the ideas applied for developing the 
formulation presented herein were originally proposed for the solution of the Navier-Stokes equa-
tions by Raw (1985). Maybe the most important feature of our formulation is the use of multidi-
mensional interpolation schemes for approximating more accurately the advection-type terms in 
differential equations. As will be shown in this work, this is the key issue for eliminating the so-
called grid orientation effect, which is a still unresolved problem in reservoir simulation. 
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2. ELEMENT-BASED FINITE VOLUME FUNDAMENTALS 
 

For the application of the EbFVM to the discretization of differential equations describing a 
flow, the solution domain must be broken up into much smaller sub-domains, called elements, 
which in this work are quadrilaterals. These entities are used for defining the discretized geometry 
of the domain as well as for defining the spatial variation of medium physical properties. The 
unknowns of the problem are calculated at points called nodes, located at every element corner. 
Around every node is built a control volume, formed by portions of the elements sharing a com-
mon node. Every control volume is delimited by a certain number of faces, obtained joining the 
center of every neighboring element with the midpoint of its two sides sharing the node around 
which the control volume is built. As the surface integrals over the control-volume faces are 
usually approximated by the midpoint rule (Raw, 1985), the face center points are commonly 
known as integration points. All these geometrical entities are depicted in Fig. 1. 

 
 
 

 
 

Figure 1 - Main geometrical entities on the element-based finite volume method. 
 
 
As in any finite volume methodology, the conservation of physical quantities over every 

control volume is the essential premise of the EbFVM. However, since the shape of control vol-
umes constructed following the described procedure can become extremely complex, a special 
strategy is required for dealing with the increased geometrical complexity. The strategy employed 
in the EbFVM, borrowed from the finite element technique, is the definition of a local coordinate 
system ξ η,  inside every element. Therefore, all needed calculations can be easily made based 
upon the geometry of isolated transformed elements, and then conservation equations of every 
control volume can be simply assembled using the contributions coming from all neighboring 
elements. For quadrilateral elements, the coordinate transformation can be conveniently expressed 
employing the bilinear shape functions (Maliska, 2004) 
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Here, jx  and jy  are the global coordinates at the j-th node of a given element, when a local 
node numbering, like the conventional one shown in Fig. 2(a) is employed. No matter how dis-
torted one element might be in terms of global coordinates, its representation in terms of local 
coordinates is always a regular square element, as shown in Fig. 2(b). 

 
 
 

 
 

Figure 2 - Isolated element in global and local coordinate system. 
 
 

For evaluating fluxes at the faces inside an element usually one need to approximate the gra-
dient of a continuous variable at integration points. Assuming a bilinear variation for a generic 
variable Θ inside an element, similar to that considered for global coordinates, the following 
approximation for its gradient can be obtained (Hurtado, 2005)  

 
1[ ] [ ] [ ][ ]eJ D−≈∇Θ Θ  (3) 

 
Here, [ ]Θ e  is a column vector containing the values of the variable Θ  at the four nodes in an 

element. Moreover, [ ]D  is an auxiliary matrix containing all first-order partial derivatives of the 
shape functions, ordered in the following way 
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In addition, [ ]J  is the Jacobian matrix of the coordinate transformation. This matrix can be 

easily obtained with the derivative matrix [ ]D  by means of  
 

[ ] [ ] [ ]eDJ = Ω  (5) 
 

where [ ]Ω e  is a 4 2×  matrix containing the global coordinates jx  and jy  of the four nodes lo-
cated at the vertices of the given element, ordered according the local node numbering showed in 
Fig. 2.  

Similar relationships can be obtained for all geometric parameters needed for the discretiza-
tion process, in terms of the local coordinate system. Further details can be found elsewhere 
(Hurtado, 2005; Raw, 1985). 

 
3. MATHEMATICAL FLOW MODEL 

 
For the sake of simplicity, the numerical formulation presented in this work will be described 

considering a two-phase incompressible and immiscible flow model. The discretization process 
for a more complex flow model certainly will share all geometry-related issues that will be dis-
cussed for two-phase incompressible model. Though, a more general formulation including fluid 
compressibility, capillary pressure, and gravity is described in Hurtado (2005) and Hurtado et al. 
(2004).  
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For incompressible fluids, the mass-conservation differential equations have the form  
 

0t I ,  Ds  ;             αα αφ =∂ + =⋅∇ v  (6) 
 

Here the two fluid phases are denoted as invading phase )( I  and displaced phase D( ). More-
over, αs  and αv  are the saturation and the mean velocity vector of the given phase, respectively; φ  
is the porosity of the medium, which is assumed independent of time. The mean velocity of each 
phase is related to the pressure gradient by means of the extension of Darcy’s law for multiphase 
flow. The mathematical expression of this law is given by  

 

I  , DP ;            α α αλ =− ⋅= ∇v K  (7) 
 

In this expression, P  is the pressure, K  is the tensor of absolute permeability of the medium, 
and αλ  is the phase mobility, which is defined as  

 

r  I ,  D
k  ;            α

α
α

αλ µ ==  (8) 
 

Here αrk  and αµ  are the phase relative permeability and the phase viscosity, respectively. 
Typically, relative permeabilities are considered function of the phase saturations. In the model 
considered herein, both absolute permeability and porosity can be function of space coordinates. 

The volumetric constraint equation closes the system of equations describing the flow. For 
two-phase flow this equation is   

 

1I Ds s+ =  (9) 
 

Although Eq. (6) together with Eqs. (7) and (9) describe adequately immiscible two-phase 
flow, an alternative pair of differential equations is more convenient for characterizing mathe-
matical properties (Peaceman, 1977) and constructing a numerical formulation. These equations 
are the pressure equation  

 

( ) 0T P  λ =⋅ ⋅∇ ∇K  (10) 
 

and the saturation equation for the invading phase, arranged in the so-called Buckley-Leverett 
form (Peaceman, 1977)  

 

( ) 0t I I Ts Fφ ∂ + ∇ ⋅ =v  (11) 
 

where λ λ λ+= DT I  is the total mobility, and = +v v vT DI  is the total velocity. Furthermore, 
/λλ I TI  F =  is known as fractional flux function, which depends only on the saturation Is . The total 

velocity has the role of coupling variable between pressure and saturation equations, by means of  
  

T T P λ= ⋅− ∇v K  (12) 
 

It is easy to realize that pressure Eq. (10) is an elliptic equation, whereas saturation Eq. (11) 
is a non-linear hyperbolic equation. As will be shown further, the comprehension of the nature of 
the differential equations is very important when selecting interpolation schemes for the numerical 
approximation of those equations. 

 
4. NUMERICAL FORMULATION 

 
A sequential solution approach will be considered for constructing the numerical formulation 

for solving the two-phase flow inside a reservoir. Therefore, the time evolution of dependent 
variables, namely pressure and saturation, will be obtained solving separately discrete analogs of 
Eqs. (10) and (11). In this section the EbFVM is applied for discretizing those equations.  
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The integration of pressure equation over a generic control volume like the one depicted in 
Fig. 1, leads to  

 

0( )T
V

   P dVλ
∆

=⋅ ⋅∇ ∇∫ K  (13) 

 

The application of the divergence theorem permits to transform the volume integral into a 
surface integral. Furthermore, the resulting surface integral can be broken up into several integrals 
defined over control volume faces, that is  
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Approximating these integrals by means of the midpoint rule (Raw, 1985) permits to derive 
the following discrete analog of Eq. (10) at time level n   

 

0( ) ( )n n
iiT i

e i e
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Here the variables are related to integration points i , which are located at face centers; 
∆S i denotes the area vector associated to a face, pointing outside of the control volume, as de-
picted in Fig. 1. The sum in Eq. (15) must be performed over all elements e  surrounding a control 
volume. Since the pressure equation is elliptic, a bilinear approximation is suitable for the pres-
sure variation inside an element (Raw, 1985), so Eq. (3) can be used for approximating pressure 
gradient. It can be shown (Hurtado, 2005) that this permits writing  
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for a given integration point i  inside an element e. Here [ ]n
eP  is a column vector whose compo-

nents are the four nodal values of pressure in the element, and [ ] ib T is a row vector defined as  
 

1[ ] [ ] [ ] [ ] [ ]i i e i ib S JK D−≡ ∆T T  (17) 
 

where [ ]∆ iS  is the face area column vector, [ ]eK  is the matrix form of permeability tensor for the 
element, and [ ] iJ  and [ ] iD are the Jacobian matrix and the derivatives matrix defined in section 2, 
both evaluated at the given integration point.  

The vector [ ] ib T has a distant connection with the transmissibility concept, used in traditional 
numerical formulations for reservoir simulation (Cordazzo et al., 2002), because it depends on 
geometric parameters and medium properties only. The situation is different here, however, be-
cause flow rate across a face is not anymore proportional to a difference between two nodal values 
of pressure as usually happens when dealing with orthogonal grids. As showed by Eq. (16), in the 
EbFVM approach, the flow rate across a face depends on the pressure values at the four nodes of 
an element. It is remarkable also that a full permeability tensor, possibly varying from element to 
element, can be included into the formulation without increasing its complexity at all. 

For assembling the complete discrete equation (15) for all control volumes, it will be consid-
ered an assembling procedure similar to that used in the finite element method. In order to make 
this possible, the contributions of an element to the conservation equations of the four adjoining 
control volumes must be arranged into the following matrix form    
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The matrix [ ]eA  is called herein as element matrix. Each row of this matrix is related to one 
of the four adjoining control volumes and includes two contributions because always two faces on 
a control-volume border lay inside an element, as shown in Fig. 2. The subscripts in Eq. (18) are 
related to the integration point numbering depicted also in Fig. 2. Moreover, Eq. (18) assumes that 
face-area vectors inside an element have fixed orientation, so a given face-area vector is positive 
in relation to one of the adjoining control volumes and negative in relation to the other. Due to 
that fact the two contributions in a row of an element matrix have opposite signs.  

The global coefficient matrix for the pressure equation system will be obtained after sum-
ming all element matrix contributions for all control volumes, according to the assembling proce-
dure depicted schematically in Fig. 3. Since no other terms exist in the pressure differential equa-
tion, the vector of independent terms for the pressure equation system will include only boundary 
condition parameters, or more specifically, well parameters. So we will have completely defined 

 

[ ][ ] [ ]n  A P B=  (19) 
 

The solution of this linear system will provide an approximation of the pressure field for a 
given phase-distribution in the solution domain at a time level n. 

 

 
 

 
 

Figure 3 - Schematic representation of the matrix assembling procedure for a three-element grid.  
 
 

In order to complete the solution process, after computing the pressure at time level n, the 
saturation should be advanced to the next time level. A discrete equivalent of differential Eq. (11) 
must be obtained for performing this step. The integration of that equation over a control volume 
gives  
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Approximating the integrals again by means of the mid-point rule and the time derivative by 
means of a backward finite difference scheme, the following discrete equation is obtained  

 
1( ) ( ) ( ) ( ) 0φ

+⎡ ⎤− =∆ +⎢ ⎥
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∑
n n

n nI Ip p
p p I i T in

i

s s V qF
t
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where ( )n
T iq  is the total volumetric flow rate across a control volume face, given by   

 

( ) ( ) ( ) [ ] [ ]λ= ⋅ ≈ −∆v Sn n n n
iT i T i T i i eq b P  (22) 

 
This volumetric flow rate can be easily computed after solving the pressure linear system. 

From Eq. (21), it follows that  
 

1( ) ( ) ( ) ( )φ
+ ∆−=

∆ ∑
nn n n n

I Ip p I i T i
p p i

ts s qFV
 (23) 

 

This explicit discrete equation can be used for advancing saturation to time level 1n+ . This 
step resembles the traditional IMPES algorithm, though a slightly different approach was used in 
this work. Since Eq. (23) has a severe time-step stability restriction, a special strategy was consid-
ered for accelerating the performance of the solution process. Since the total velocity field fre-
quently evolves much slowly than saturation field, that velocity field can be kept frozen during a 
certain period of time in which only saturation is advanced, using a stable time-step. Following 
that practice, it is no more required to solve pressure linear system every time that saturation is 
updated. Consequently, significant computation-time savings can be obtained without appreciable 
declining in quality. This solution strategy is discussed more deeply in Hurtado (2005).  

 
5. SPATIAL INTERPOLATION SCHEME 

 
An important issue arises concerning the interpolation scheme for computing ( )n

iIF  at integra-
tion points in Eq. (23). Since saturation differential equation is hyperbolic, linear-type interpola-
tions are not suitable because it produces unrealistic solutions with spurious spatial oscillations 
and unbounded values (Peaceman, 1977). In order to avoid this, upwind-type interpolation 
schemes are commonly used in reservoir simulation. However, the customary approach is to use 
one-dimensional upwind schemes along grid lines. This causes an undesirable and frequently 
strong dependence of the numerical solutions on the computational grid, the so-called grid orien-
tation effect (Brand et al., 1991).  

Taking advantage of the increased geometric flexibility provided by the EbFVM discretiza-
tion approach, we used an interpolation scheme that takes into account the multidimensional 
nature of the flow. This is the point that distinguishes our formulation from customary numerical 
formulations used in reservoir simulation. The original form of the interpolation scheme consid-
ered herein was proposed for approximating the advection terms in the Navier-Stokes equations 
(Schneider & Raw, 1986). It has two fundamental features: the absolute preservation of the posi-
tivity of the discretized equation coefficients and the consideration of the flow local direction.  

In order to define the interpolation scheme, which will be designated herein as flow-weighted 
upwind scheme (FWUS), it is needed to consider a local flow ratio. For a given integration point, 
that parameter is defined as the ratio of the total flow rate across the upwind face and total flow 
rate across the face where the integration point is located. For instance, the flow ratio at integra-
tion point 1, for a positive flow orientation (pointing to local node 4) will be  

 

2
1

1

( )
( )

ω = T

T

q
q

 (24) 

 

Figure 4 shows three cases considered in the interpolation scheme originally proposed by 
Schneider & Raw (1986). They correspond to integration point 1 and are determined by 
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Figure 4 – Three cases considered in the flow-weighted interpolation scheme. 
 

the flow ratio value. For the interval 10 1< <ω , 1( ) =I iF  is considered a linear combination of 2( ) =I iF  
and 1( ) =pIF  because a portion of the flow passing through the face 1 comes from face 2,  transport-
ing by advection integration point value 2( ) =I iF , and another portion comes from inside the control 
volume, thus carrying nodal value 1( ) =pIF . This is schematically depicted in Fig. 4(b). In that case, 
the flow ratio 1ω  is taken as interpolation factor because it determines the proportion of the fluid 
that passes through face 1 and comes from face 2.  

Two limiting cases can be considered in the interpolation scheme. One of them, depicted in 
Fig. 4(a), arises when 1 1≥ω . In this case all the fluid flowing across face 1 comes from face 2, 
consequently it is stated that 1 2( ) ( )= ==I i I iF F . The opposite case occurs when 1 0≤ω , as can be 
seen in Fig. 4(c). Now all flow comes from inside the control volume to which face 1 belongs, 
transporting by advection the nodal value associated to it, so it is considered 11( ) ( ) pI i IF F == =  in this 
case. Similar reasoning is applicable to all integration points inside an element. In the end, all 
described cases for integration point 1 can be summarized in the expression  

 

1 1 1 1 2( ) ( )( ) ( )1= = =⋅= − Λ + ΛI i I p I iF F F  (25) 
 

where the interpolation factor is given by 
 

1 1[ ]max min( ), , 01ω=Λ  (26) 
 

It is possible to show that the upwind interpolation scheme defined by Eqs. (25) and (26) gen-
erates discrete advection operators with always positive coefficients (Schneider & Raw, 1986, 
Hurtado, 2005). This assures that no spurious spatial oscillations or unbounded values arise in the 
saturation field, an essential requirement for reservoir simulation. The local direction of total flow 
is accounted for introducing the flow ratio into the interpolation scheme. Therefore, the adverse 
grid influence exhibited by conventional upwind schemes is reduced significantly, even in the 
more unfavorable cases. For reducing grid orientation effect, we achieved even better results 
substituting Eq. (26) by smooth functions ( )ii i ω=Λ Λ  which are tangent to ii ω=Λ  at 0iω =  
and that reach asymptotically the limiting value 1i =Λ  for iω → ∞ . In the next section several 
examples using those interpolation functions will be presented, showing practically no grid orien-
tation effect. 

 
6. APPLICATION EXAMPLES 

 
Two application examples of the proposed formulation are presented in this section. The first 

problem is the simulation of oil secondary recovery in a faulted reservoir. The quadrilateral un-
structured grid used for discretizing a fictitious reservoir is shown in Fig. 5. Local refinement is 
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considered in regions around wells (one injection and two production wells) since usually more 
accurate solutions are required in those regions. A geological fault is modeled as an internal 
impermeable boundary, so the grid was enforced to adapt to the geometry of this boundary. Al-
though our formulation is able to deal with heterogeneous and anisotropic media, in this example 
was considered a uniform and isotropic medium. Figure 6 shows the time evolution of water 
saturation in the reservoir, predicted using the present numerical formulation. 

 
 

 
 

Figure 5 – Unstructured grid with local refinement for a faulted reservoir. 
 

 

 
 

Figure 6 – Predicted time evolution of water saturation in the faulted reservoir. 
 
 

As second example is considered the five-spot problem, a well-known test for evaluating the 
grid orientation effect. It consists in the simulation of a water-oil displacement in a periodic ar-
rangement of injection and production wells, as illustrated in Fig. 7. Due to symmetry, two Carte-
sian grids in simple square domains can be used to solve the flow, the so-called diagonal and 
parallel grids (see Fig. 7). Ideally, the numerical solution in any grid should be the same, or at 
least nearly the same, but this is not the case when conventional formulations are used in adverse 
cases (Brandt, 1991). The most adverse situations arise when the mobility of the water (invading 
phase) is greater than the mobility of the oil (displaced phase) and a strong discontinuity develops 
in the saturation field. In order to enforce a piston-type displacement, according to Yanosik & 
McCracken (1979) the fractional-flux function was defined as 

 
2ˆ=I IF s  (27) 
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where ˆIs  is a normalized saturation. Moreover, a water/oil mobility ratio value of 10 was consid-
ered for obtaining the numerical solutions presented subsequently. 
 

 

 
 

Figure 7 – Schematic diagram of five-spot well arrangement. 
 

 

 Figure 8 presents a comparison of predicted saturation isolines, obtained in a 400-element 
diagonal grid and in a 784-element parallel grid employing three upwind interpolation schemes. 
The solutions in Fig. 8(a) were obtained with the one-dimensional upwind scheme along grid 
lines, ordinarily used in conventional numerical formulations. As can be observed, a significant 
discrepancy exists in that case between diagonal-grid and parallel-grid solutions. Better agreement  
 

 

 0.2 VPI 0.4 VPI 0.6 VPI 0.8 VPI 

  (a) 

  

  (b) 

  

  (c) 

  

   
            Diagonal grid solution 
            Parallel grid solution 

Figure 8 – Comparison of diagonal-grid and parallel-grid solutions for a piston-type dis-
placement in a quarter of a five-spot configuration, using (a) conventional upwind inter-

polation; (b) Schneider & Raw’s FWUS; and (c) FWUS with Λ i  given by Eq. (28).  
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is obtained using the flow-weighted upwind scheme of Schneider & Raw, defined by Eqs. (25) 
and (26). The solutions with that scheme are showed in Fig. 8(b). However, even better agreement 
is achieved employing an interpolation factor defined by the smooth function 

 

max [ ( ) , ]0/ 1ω ω=Λ +i i i  (28) 
 

Solutions with that scheme are compared in Fig. 8(c). As can be clearly seen, almost no grid 
orientation effect is noticeable in those solutions. Relating the interpolation scheme to the local 
flow direction through the flow rate ratio has the effect of removing practically all anomalous 
influence of the grid on the numerical solutions. In order to demonstrate the behavior of the inter-
polation scheme with unstructured grids, the previous problem was solved using the two grids that 
are showed in Fig. 9, a 440-element ‘diagonal’ grid and a 790-element ‘parallel’ grid. The solu-
tions obtained in those grids are compared in Fig. 10. Again no significantly differences among 
solutions are perceptible. Further evaluation of the performance of the flow-weighted interpola-
tion scheme in reservoir simulation can be found in Hurtado (2005). 

  
 

 
 

Figure 9 – Unstructured ‘diagonal’ and ‘parallel’ grids. 
 

 

0.2 VPI 0.4 VPI 0.6 VPI 0.8 VPI 

  

  
            Diagonal grid solution 
            Parallel grid solution 

Figure 10 – Comparison of solutions in a quarter of a five-spot configuration, obtained in 
unstructured ‘diagonal’ and ‘parallel’ grids. 

 
 

7. CONCLUDING REMARKS 
 
An element-based finite volume formulation using quadrilateral unstructured grids has been 

presented in this paper. Although a two-phase incompressible flow model was considered for 
describing the discretization of differential equations, a more general formulation, e.g. one based 
on the black-oil model, can be straightforwardly constructed since all geometry-related issues will 
be essentially the same considered in this work.  
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As seen in two application examples, our formulation has two major advantages over the 
common numerical methodologies used in reservoir simulation. First, it has increased geometrical 
flexibility for accurately represent complex reservoirs with local grid refinement in regions of 
special interest. And second, truly multidimensional upwind schemes can be easily implemented 
in the element-based framework. As showed in the five-spot example, the flow-weighted upwind 
scheme used in this work resulted in numerical solutions with virtually no grid orientation effect. 
Certainly, these advantages should encourage further developments in reservoir simulation apply-
ing the element-based finite volume methodology. 
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