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Abstract. In this paper, the interfacial heat transfer process of spherical and distorted fluid particles is studied through

the Volume-Of-Fluid approach, aiming the development of closure correlations for the two-fluid model in heat and mass

transfer problems. The Nusselt numbers of spherical particles are compared with the usual correlations presented in

literature to validate the numerical model. From the methodology adopted in this work is possible to perform an analysis

of the flow and thermal field around the fluid particles and study the effect of different morphologies on the global heat

transfer coefficients. It is shown that the interfacial heat flux distribution is affected by the particles shape, inducing

changes in the flow and thermal fields around the fluid particle and consequently leading differences in total heat transfer

rate.
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1. INTRODUCTION

Gas-liquid two-phase flows are frequently encountered in the oil, chemical and energy transformation industries. Some
specific applications in oil and gas industry related to flow assurance problems, such as wax deposition, hydrate formation
and corrosion problems by CO2 and HS2 among others, require, in addition to the interfacial momentum transfer, the
detailed modeling of the heat and mass transfer processes between phases. These flows usually includes multicomponent
systems where mass transfer processes are linked to concentration gradients.

Bubbles of different sizes and shapes are encountered in several flow patterns, ranging from spherical ones in finely
dispersed bubbly flow to Taylor bubbles in slug flow. Even in slug flow pattern, small dispersed bubbles flow within the
liquid slug between two consecutive Taylor bubbles. The simulation of these flows requires precise closure models for
interfacial transfer, even in an one-dimensional approaches, utilized in flow wells or multi-dimensional models, employed
in the modeling of the flow inside pumps, separators and other elevation components and primary oil treatment. For the
case of momentum transfer, several closure relations have been presented in literature (Ishii and Hibiki, 2011; Clift et al.,
1978) including correlations for the the cases of distorted bubbles. On the other hand, in modeling interfacial heat and
mass transfer processes, in the application of the two fluid models for dispersed flow patterns the usual practice is to
employ consolidated correlations based on Re and Pr dimensionless groups, but considering perfectly spherical shaped
bubbles (Takemura and Yabe, 1998; Oellrich et al., 1973; LeClair and Hamielec, 1971; Winnikow, 1967), which is not
always true in several real applications. Furthermore, the heat and mass transfer between phases in bubbly flow regime
is still not fully understood and is a topic of ongoing research (Hayashi et al., 2014; Bothe and Fleckenstein, 2013;
Aboulhasanzadeh et al., 2013, 2012; Marschall et al., 2012).

The main difficult in modeling multiphase, multicomponent and non-isothermal flows is the interface tracking and its
definition, as well the transfer mechanism and calculation between the two (or more) distinguished domains. Most of
the recent numerical works exploring the interfacial heat and mass transfer utilizes interface or front tracking methodolo-
gies, such as Volume-Of-Fluid (Bothe and Fleckenstein, 2013), Level-Set (Wang et al., 2008) and other Front-Tracking
methods (Aboulhasanzadeh et al., 2012). For the interfacial transfer mechanism, several approaches have been proposed
in literature. In the recent paper of Marschall et al. (2012), the authors propose a new method for the calculation of the
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interfacial mass transfer fluxes, called the Continuous-Species-Transfer(CST) which is based on an analogy of the the
well-known Continuous-Surface-Force(CSF) Method from Brackbill et al. (1992). Another alternative to calculate the
mass and heat transfer is to utilize the overall energy or mass balance concept, as showed in (Hase and Weigand, 2004)
and (Wang et al., 2008).

The main objective of the present work is to determine, through a detailed modeling of the flow around bubbles with
different interface shapes, the interfacial heat and mass transfer coefficients in non-isothermal multiphase flows and how
the interface shape affects the process and, ultimately, the global heat and mass transfer coefficients, which are needed for
the two-fluid model closure.

2. METHODOLOGY

2.1 CFD model

To accomplish the objective previously defined, the detailed flow structure around individual bubbles was studied
through the Coupled Level Set and Volume-of-Fluid (CLSVOF) method (Sussman and Puckett, 2000). In this approach
the advantages of the Level Set method (well defined interface and easiness of computing its curvature) and the Volume-
Of-Fluid method (naturally conservative) are combined.

For the momentum equation, the chosen surface stress model was the Continuous Surface Force (CSF) (Brackbill
et al., 1992). The phases are modeled as incompressible and viscous in a laminar flow. The simulations presented in this
work were developed in ANSYS FLUENT CFD 15.0.

From the generalized graphical correlation shown in (Clift et al. (1978), p. 27) the bubble shape can be predicted by
the use of some characteristic dimensionless numbers, these are the Eötvös (Eo = g (ρc − ρb) d2

b/σ), Reynolds (Re =

ρcUtbdb/µc) and Morton (Mo = gµ4
c (ρc − ρb) /ρ2

cσ
3), where ρ is the density, µ is the viscosity, σ is the surface tension,

Utb is the bubble terminal velocity, db is the bubble diameter, whose calculation will be shown later. The subscripts b and
c represent, the bubble and the continuous phase, respectively.

Another important dimensionless number in the heat transfer analysis is the Prandtl number (Pr = Cpcµc/kc.) that
gives the relation of momentum and thermal diffusivity.

Along with fore mentioned dimensionless numbers, four other characteristic dimensionless numbers are the density
ratio (γ = ρb/ρc), the viscosity ratio (κ = µb/µc), the thermal conductivity ratio (β = kb/kc) and the specific heat
capacity ratio (λ = Cpb/Cpc)

In the analysis of the heat transfer between the phases, the results presented in this work will be expressed by the
Nusselt number (Nu = hdb/kc), where h is the heat transfer coefficient.

In a heat transfer analysis, the common practice to obtain the heat transfer coefficient h value is to employ a heat
balance at the interface in the following manner,

h =
−kc
S∆T

∂T

∂n̂

∣∣∣∣
interface

(1)

where n̂ is normal vector pointing outward the interface, ∆T is the temperature difference and S is the interfacial surface
area.

However, one of the shortcomings of the interface tracking through implicit methods, such as VOF, Level-Set or
CLSVOF, is that the interface position is not exactly defined. Although the mesh refinement lead to a more accurate
capture of the interface position, from the continuous point of view of the VOF approach, the high gradients of both
temperatures and, mainly, fluid transport properties, which, when evaluated for the mixture, are function of the volume
fraction, happens precisely at the interfacial region. Thus the explicit calculation of the interfacial heat fluxes is not
accurate , as can be seen in Fig. 1 where the dimensionless local Nusselt (Eq. (9)), tangential velocity (Eq. (10)) along the
interfaces (calculated with φ = 0.00, φ = 0.01 and φ = 0.02) are given. As seen, the interface position and the velocity
profiles show almost none discrepancies, while the local Nusselt for the three φ values do not coincide at the particles
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front hemisphere, where the heat fluxes are stronger. Although the values are not the same, they show the same tendency
and are of fundamental importance to support the physical analysis and conclusions about the global results obtained.
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Figure 1. Dimensionless local Nusselt number Nu∗ and dimensionless tangential velocity ut∗ for the interfaces obtained
for different Level-set function φ values.

The calculation of the interfacial heat fluxes are also a difficulty in explicit interface tracking methods, as Lagrangian
approaches based on immersed boundary methods (Aboulhasanzadeh et al., 2012; Hayashi et al., 2014), as the transport
equations are resolved in a fixed the background mesh where the fluxes at the interface cannot be explicitly calculated,
even when the position of the interface is explicitly determined, as any of these methods cannot handle sharp variation of
the transport properties. The only approaches which allows the explicit calculation of interfacial fluxes are those based on
the interface fitted grid.

In addition, when calculating the heat transfer coefficient h (Eq. (1)) a reference temperature is required at the in-
terface, Ts. Once the temperature variation across the interfacial region is sharp in the CLSVOF method, the interfacial
temperature Ts cannot be easily defined. This problem was tackled by calculating the Nu number from a global balance,
maintaining the particle temperature by the inclusion of a source term in the energy conservation equation, via FLUENTs
User Defined Functions(UDF), which was equal to the total heat transferred in the previous timestep ∆t, from the bubble
to the continuous phase. Equation (2) is the source term added to the energy conservation equation

Sh =
αbρbCP b

(
Tb − T t−∆t

)
∆t

(2)

where Tb is the bubble temperature defined in the beginning of each simulation run and T t−∆t is the temperature in the
previous timestep. The term αb in Eq. (2) ensures that the source term only exists in the bubble domain, seeing that αb
has zero value outside bubble domain and 0 < αb ≤ 1 inside.

With the aid of this source term, Tb remained constant during the whole simulation time due to the fact that a small
time step ∆t was chosen. As a result, the reference temperature difference(∆T = Tb − Tc) was simply made equal to the
temperature of the bubble Tb minus the temperature of the liquid far from the interface Tc (which is equal to the initial
liquid temperature). Employing an energy balance in a control volume V.C. large enough to enclose the bubble interface,
it was possible to calculate the total heat Q̇ transferred from the dispersed to the continuous phase through the integration
of Sh resulting in Q̇ =

∫
V.C

ShdV . In this fashion, the Nusselt number, is defined by

Nu =
Q̇db

S (Tb − Tc) kc
(3)

The analysis of the local Nusselt number along the interface is important in order to understand some phenomena
related to local flow pattern as, for instance, the separation point of the boundary layer, behind the fluid particle. The
local Nusselt number was calculated through the explicit calculation of the interfacial fluxes assuming an interface po-
sition, which is defined as the iso-surface where the level-set function had zero value (φ = 0.00). The convective heat



Proceedings of the ENCIT 2014
Copyright c© 2014 by ABCM

15th Brazilian Congress of Thermal Sciences and Engineering
November 10-13, 2014, Belém, PA, Brazil

transfer coefficient h was calculated with Eq. (1), and then, the resulting Nusselt number was non-dimensionalized by the
difference between the maximum and minimum values of the Nu number (Eq. (9)). Although the resulting Nu numbers
calculated in this way can be only considered as qualitative parameters, as the same methodology was used in all cases, a
qualitative comparison of local phenomena, among the different cases can be performed.

To simulate the process of a rising bubble in a infinite media, the computational domain and the boundary conditions
were defined according to the scheme shown in Fig. 2.
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Figure 2. Computational domain scheme, boundary and initial conditions.

In this work, the governing equations are solved with the reference coordinate system fixed on the bubble. Employing
this reference coordinate system, it was possible to reduce the computational domain, once it was only needed to enclose
a relative small domain around the bubble, when comparing the computational domain required for a inertial coordinate
system. This allowed for a better mesh refinement, specially near the bubble, where the transfer of heat and momentum
occurs, enhancing the quality of the results and allowing the bubble to rise for large periods of time with no physical
limitation.

In order to include the effects of the bubble acceleration, a source term was added to the momentum conservation
equation via FLUENTs User Defined Functions(UDF). First, an average bubble rise velocity Ubt was calculated, in a
instant of time t as

Ub
t =

∫
φ≤0

udΩ∫
φ≤0

dΩ
(4)

where Ω is the computational domain and u is the axial component of velocity ~u. It is important to leave clear, that the
volumes with φ ≤ 0 where approximately the ones enclosing the dispersed phase (bubble) and the calculations were
performed after each time step was converged. This Ubt was then introduced to the Uinlet as Uinlet = −Ubt in the top
boundary condition (see Fig.2) at the new instant of time t+∆t. A new average bubble rise velocity Ubt+∆t was obtained
at this time instant. The bubble acceleration in each time step was evaluated as,

abubble =
Ub

t+∆t − Ubt

∆t
(5)

In this way, the source term introduced in the momentum conservation equation Sm = −ρ abubble and was applied to each
volume of the computational domain to remain the bubble stationary.

For the cases of deformed bubble shapes, it was necessary to define an equivalent bubble diameter to obtain some of
the dimensionless parameters presented in the equations above. This bubble diameter db was defined as the equivalent



Proceedings of the ENCIT 2014
Copyright c© 2014 by ABCM

15th Brazilian Congress of Thermal Sciences and Engineering
November 10-13, 2014, Belém, PA, Brazil

diameter from a spherical bubble, such that

db =
3

√
6Vs
π

(6)

derived from the volume from a sphere (πd3/6) and a calculated bubble volume Vs.
To simulate the rising bubble, the bubble initial shape was defined as a sphere with diameter db placed 15db away from

the bottom. In the interest to reduce the computational effort, the mesh was subdivided in two different regions, a smaller
fine region with an uniform structured mesh followed by a larger coarse non-uniform structured mesh. The transition
between the regions was made smooth with the help of a spline function.

2.2 Numerical Simulations

In order to study the effect of the bubble shape on the heat transfer process, it was necessary to develop studies for
situations located in the three distinct regions of the bubble shape regimes: i) spherical; ii) ellipsoidal and iii) ellipsoidal-
cap, as presented (Clift et al. (1978), p. 27).

The simulations were performed for a pair of Eötvös Eo and Morton Mo numbers with three different Pr val-
ues (Pr = 5.0, Pr = 7.5 and Pr = 10.0). The property ratios were set constant for all cases (κ = γ = λ = β = 0.1).

3. NUMERICAL PROCEDURE

3.1 Mesh convergence test

A mesh refinement study was made to ensure that simulations were performed free of discretization error and the
computational mesh was capable to capture the boundary layer effects, once the interfacial heat and momentum transfer
occurs in this region.

Based on the fact that higher the Re, thinner is the momentum boundary layer and the Pr number gives the relation
of the momentum and thermal boundary layer in a inverse proportion, i.e. higher the Pr, smaller is the thermal boundary
layer, the mesh convergence study was made for the higher Mo in each Eo – the higher Re in each Eo – with Pr = 10.0.

The number of volumes accounted in the mesh refinement study are those of the fine region (see Fig. 2), Nvol =

(1.1db)(1.1db)/∆l
2, where ∆l = ∆x = ∆y is the finite volume size in the fine region. Below in Fig. 3 is the Nu values

for the different mesh sizes.
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Figure 3. Mesh convergence study for the higher Re in each Eo with Pr = 10.0.

Figure 3 shows that the mesh resolution with ∆l = 0.04db presents little deviation from the finer resolution, except
for Eo = 1.0. This exception can be explained by the high Re number of this point, greater than the other simulations.
Therefore, for Eo = 1.0 the simulations were performed with ∆l = 0.02db while for the others ∆l = 0.04db.
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4. RESULTS AND DISCUSSIONS

4.1 Comparison with the literature

From the spherical and almost spherical (for high Re values the morphology slightly deviates from a sphere) cases
presented (Eo = 1.0), the numerical results presented here were compared with correlations found in literature (Takemura
and Yabe, 1998; Oellrich et al., 1973; LeClair and Hamielec, 1971; Winnikow, 1967). This comparison is shown in Fig. 4
for Pr = 10.0 through the Nusselt number Nu and the Nudiff (see Eq. (7)) plotted against the obtained Re number. The
results for Pr = 5.0 and Pr = 7.5 presented the same behavior, an increase in Re leading to an increase in Nu.

Nudiff =
Nu−Nucorr

Nu
, (7)

where Nucorr is the value given by the correlations found in the literature.
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Figure 4. Nusselt Nu and Nudiff (see Eq. (7)) values against Reynolds Re numbers obtained in the present work from
correlations found in literature (Takemura and Yabe, 1998; Oellrich et al., 1973; LeClair and Hamielec, 1971; Winnikow,

1967) for Pr = 10.0.

From Fig. 4 it is possible to see that the methodology utilized in the present work captures well the interfacial transfer
and agree well with the correlations presented. As expected, the increase in the ReynoldsRe number provokes an increase
in the Nusselt Nu number and Nu→ 2.0 for Re→ 0 ,the value for pure diffusive heat transfer.

4.2 Local Heat Transfer

Figure (5) shows the bubbles shape, temperature and the external and internal flow streamlines, after reaching the
steady-state regime, for four different configurations. The morphologies can be classified as the following: i) spherical
shape (Eo = 1.0, log(Mo) = −5.0); ii) ellipsoidal shape (Eo = 5.0, log(Mo) = −5.0 and Eo = 10.0, log(Mo) =

−4.5); and iii) ellipsoidal-cap shape (Eo = 40.0, log(Mo) = −2.0).

Figure 5. Bubble shape, temperature and the streamlines around and inside it, after reaching the steady-state regime for
Pr = 10.0 (not in scale).

Figure 5 gives a visual insight of how the deformation (deviation from the spherical shape) affects the temperature
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field and flow around and inside the fluid particle domain. As the deformation increases (higher Eo) a recirculation zone
starts to appear in the rear, affecting the temperature field in this region.

In order to show how the deviation from a spherical shape and the velocity field near the interface affects the heat
transfer, Fig. 6 gives the normalized Nusselt number Nu∗ and normalized tangential interface velocity ut∗ around the
bubble with the aid of the dimensionless distance s∗, these denoted by:

s∗ =
s

smax
; (8)

Nu∗ =
Nuloc −Numin

Numax −Numin
; (9)

ut
∗ =
|utloc|
utmax

; (10)

where ~t is the tangential interface vector of bubble interface and the subscripts loc, min and max refers respectively to the
local, minimum and maximum values.
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Figure 6. Normalized tangential interface velocity ut∗ and Nusselt number Nu∗ around the bubble. These profiles were
extracted for the situations given in Fig. 5.

From Fig. 6 the wake region is clearly visible in the s∗ vs. ut∗ plot, comprehending the region where ut∗ changes
its sign. The effects of this recirculation and the fluid particle morphology in the interfacial heat transfer is also seen
in the s∗ vs. Nu∗ plot. For Eo = 1.0, a case that does not have recirculating fluid, the local interfacial heat transfer
decays from a maximum value in the bubble front (s∗ = 0.00) to a minimum in the rear end (s∗ = 1.00). Increasing
the Eo, Eo = 5.0, the profile begins to change, with the recirculation zone lowering the heat transfer in the rear. In the
front position, the heat transfer is augmented by the flattening of his region. In the two last situations, Eo = 10.0 and
Eo = 40.0, the recirculation behind the fluid is more intense, allowing the bubble to exchange more heat when compared
to the last situation (Eo = 5.0). For Eo = 10.0, the maximum interfacial heat transfer is no longer placed in the front
stagnation point, but next to the maximum ut

∗ position due of the flatting of the north hemisphere. This maximum point
returns to front stagnation point for Eo = 40.0 due to the "streamlined" shape of the ellipsoidal-cap.

5. CONCLUSIONS

In this work the interfacial heat transfer of spherical and distorted bubbles was studied with the Coupled Level Set
and Volume-Of-Fluid (CLSVOF) model available in ANSYS CFD FLUENT 15.0. The governing equations were solved
for a moving reference frame, including the effect of the bubble acceleration trough a source term in the momentum
conservation equation, implemented via FLUENTs User Define Functions (UDF).

It is shown that is difficult to evaluate temperatures and fluxes in the interface, due to shortcoming of the interface
tracking through implicit methods, although the values obtained in this fashion present qualitative results. In order to
compensate for this fact, the temperature in the dispersed phase (bubble) is maintained constant through an energy source
term added via FLUENTs User Define Functions (UDF). With the aid this source term is possible to calculate the interfa-
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cial heat transfer and to develop studies from different bubble regimes.
The methodology utilized in the present work capture well the interfacial transfer, once the mesh refinement study

shows that the boundary and momentum boundary layer are captured and the dimensionless values obtained (Nu andRe)
agree well with correlations encountered in the literature(Takemura and Yabe, 1998; Oellrich et al., 1973; LeClair and
Hamielec, 1971; Winnikow, 1967) for spherical bubbles.

Through a detailed modeling and analysis of the flow around bubbles with different shapes it was possible to possible
to perceive changes in the thermal and flow behavior as the deviation from a spherical shape increases.
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