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Resumo � Este trabalho apresenta um estudo das transmissibilidades, considerando apenas a influência da 
geometria do reservatório de petróleo, através da similaridade física existente entre os fenômenos de transferência de 
massa em meios porosos e a transferência de calor. Inicialmente, a partir das equações de transporte, a 
transmissibilidade é definida, sendo na seqüência,  apresentada a analogia entre as equações de transferência de calor e 
massa. Um problema bidimensional de transferência de calor, com solução analítica conhecida, é resolvido utilizando-
se quatro modelos diferentes de determinação de transmissibilidades. Pela comparação dos resultados, percebe-se que o 
modelo atualmente utilizado pelos simuladores comerciais, embora seja exato para problemas unidimensionais, não é o 
mais apropriado para problemas bidimensionais. Nestes casos recomenda-se a utilização do método que interpreta a 
malha como sendo a de Voronói. 

 
 Palavras-Chave: transmissibilidade; simulação de reservatório; refino localizado  
 
 Abstract � This work analyses the transmissibility calculation, considering taking into account only the 
geometric influences, using the physical similarity between the mass transfer in porous media and heat transfer in 
solids. Initially, the transmissibility is defined from the transport equations. In the sequence, the analogy between the 
heat and mass transfer equations is presented.  Finally, a two-dimensional heat transfer problem, that has analytical 
solution, is solved by four different models for the transmissibility. In this paper it is shown that the conventional model 
used in the commercial simulators, even though it is exact for one-dimensional problems, is not the most recommended 
for two-dimensional problems. For these cases, the best results occur when the simulator interprets the grid as a 
Voronoi one.  
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1. Introduction  
 
 The Cartesian is the grid type most commonly used in petroleum reservoir simulation. Even though, using 
variable grid spacing, it does not supply a good description of some domain areas. In order to improve the domain 
representation, saving computer time, only some small parts (blocks) of the grid can be refined. This is called �local 
grid refinement� (Heinemann and Brand, 1989). 
 Generally, those grids are constructed such that modifications of the discretization formulas are needed only at 
the interfaces between fine and coarse blocks. 

This paper will discuss some models used to represent these blocks connections. The approach is done by the 
similarity with heat transfer problems. Initially, the concept of transmissibility and the correspondence between mass 
and heat transfer problems are presented.  After, four models for the  transmissibility calculation are compared and 
some concluding remarks are made. 
  
 
2. Transmissibility Definition 
 
 In mass transfer problems in petroleum engineering the equation for one of the components in a multiphase 
flow is given by 
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where P is the pressure, λ is the mobility, φ  is the porosity, S is the saturation, B is the formation volume factor and q  
is the flow rate per unit of reservoir volume, at reservoir conditions. When the Equation 1 is integrated in a control 
volume, the term in the left side becomes a sum of mass fluxes through the surfaces of this volume. 
 Most of the reservoir simulators use two-point flux approximation schemes. The mass flux of a component 
between two adjacent grid-blocks i and j in the discrete solution of the transport equations is given by (Heinemann and 
Brand, 1989) 
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where n is the number of phases; k is the absolute permeability, Aij and hij are, respectively, an area where the mass 
flows and an adequate length for the gradient determination in the surface. In Equation 2, the terms independent of 
pressure and saturation can be grouped in the form 
 

( ) ( )ijTQ PP
p

n

p
ijpijij −∑

=
=

1
λ                    (3) 

 
where Tij is called transmissibility which is, therefore, defined as ijijijij hAkT = . 

Transmissibility depends on block geometry and permeability, and its inverse is called resistivity. Using the 
resistivity concept, the Ohm�s Law can be applied to calculate the total resistance, and in consequence the 
transmissibility, between connected elements.  

 
 
3. Correspondence between Mass and Heat Transfer Governing Equations 

 
The conservation equation of energy is given by 
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where k represents the thermal conductivity, S is the source term and is related to a possible energy generation, ρ is the 
density and cp is the specific heat. Integrating Equation 4 in a control volume, and after the application of divergence 
theorem, this equation yields: 
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Here, we can establish an analogy between the conductance (U) of heat transfer problems and the 
transmissibility (T) of transport problems in porous media. Both depend only on geometric and media properties.  

The great difficult to solve the problems is the exact determination of the conductance U between two blocks. 
If U is deduced directly from differential equation in a conservative form, there are no difficulties since the 
determination, in this way, is done directly from the approximate equation (Cordazzo et al. 2002). 

For one-dimensional problems the concept used in most commercial softwares suffices. However, for 2D 
situations the transmissibility calculated using only two-grid points leads to approximation errors of the fluxes. An 
example of a 2D problem is discussed in the next section. 

 
 

4. Transmissibility Calculation in 2D a Problem 
 
 In this section we investigate different models to calculate transmissibilities in a 2D problem. A heat transfer 
problem that has analytical solution is used for this purpose. This problem is depicted in Figure 1.  

 

  

(a) (b) (c) 
 

Figure 1. (a) 2D heat transfer problem and grids with local refinement: (b) with 5x5 and (c) with 21x21 volumes. 
 

This problem has an analytical solution which permits an accurate evaluation of the different methods of 
transmissibility calculation. The analytical solution, obtained by the method of separation of variables is given by 
(Incropera et al. 1990) 
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For the numerical study the domain was discretized using Cartesian grids with local refinement, such as shown 

in Figure 1(b) and 1(c). This type of local refinement originates the condition where a control volume face has contact 
with other two volumes. So, there are different ways to calculate the transmissibility which will be investigated through 
the use of a 5x5 coarse grid, Figure 1(b), a fine (21x21) grid, Figure 1(c). The columns are locally refined with a 
multiplier factor 2. 

We will investigate four different models in order to determine the transmissibilities. All models can be 
interpreted as an electrical resistance model. However, we identify the fourth model as the electrical resistance model 
because it calculates one resistance for each control volume unlike the other models, which calculate only one 
resistance for two control volumes. An application using C++ programming language was developed in order to solve 
the numerical problem. 
 
4.1 Model 2D-1: Using Sammon�s equation 

This model, presented by Sammon (2000) and already used by Hegre et al. (1986), uses the dashed area and the 
length L shown in Figure 2. It is the scheme used in the commercial simulators that calculate the flux by two points 
only. 
 

 
 

Figure 2. Dimensions used in model 2D-1 
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Both the length L and the transversal area A, represented by the dashed line in Figure 2, are given by 
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Supposing a uniformly spaced grid (∆xi =∆yj), the conductance expression yield: 
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4.2 Model 2D-2: Using the correction factor cos² β 

The angle β is defined here as the angle formed between the line that joins the centers of neighbor volumes and 
the horizontal line, as shown in Figure 3. 
  
 

 
 

Figure 3. Dimensions used in model 2D-2 
 

In this model, the length L is the same of the model 2D-1, and the transversal area, represented by the dashed 
line in Figure 3, is given by 
 

βcosjyA ∆=                (9) 
 

Due to the fact that the grid is uniformly spaced, we have, ∆xi =∆yj and therefore the conductance between the 
volumes i and j, Uij, is given by 
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For the volumes j and k, the conductance is the same of the Model 2D-1. 

 
4.3 Model 2D-3: Using Voronoi Grids 

In the Voronoi grid (Maliska, 1995), the transversal area used is located in the middle point of the cells� centre-
to-centre line. For this grid, the conductance between the volumes i and j is the same that was calculated by model 2D-1 
since the areas utilized in these models are identical, as shown in Figure 4. The construction is done in such a way that 
the line joining two grid-points is normal to the control volume�s surface. 
  

  
(a) (b) 

 
Figure 4. (a) Dimensions used in model 2D-3 and (b) the effective grid where the conductace are determined. 
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The only, but important difference, between this model and the model 2D-1 is the conductance between the j 
and k, where the area utilized is Ajk in Figure 4(a), which is less than the area utilized in previous models, and is given 
by 
 











−∆=

2
1

2βtgxA jjk                 (11) 

 
Therefore, the conductance values for this case are 
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The modification of the area between the volumes j and k resulted in a modification of the grid as shown in 

Figure 4(b), which became a Voronoi grid. It is important to notice that the alteration of the normal flux surface for 
conductivities Uij and Ujk identifies the two-dimensional character of the problem. 
 
4.4 Model 2D-4: Using the electrical resistance 

In this model the resistances are calculated for each volume and the total resistance is the sum of these 
resistances in series. The areas are the same for two volumes, and the lengths go from the centre of the volume to the 
center of the contact surface. 
 

  
(a) (b) 

 
Figure 5. (a) Model 2D-4, based on electrical resistances, and (b) its dimensions. 

 
Therefore, the equivalent resistance Rij is given by 
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and the conductance between the volumes i and j, Uij, yields 
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 The conductance between the volumes j and k is the same as Model 2D-1. 
 
4.5 Comparison between the models 

Following, we present the results of the heat transfer problem defined in Figure 1(a) for the four different 
models described above. The differences verified in the coarse and fine grids depicted in Figure 1(b) and 1(c) are also 
shown. 

In Figure 6 are plotted the results for the volumes contained in the vertical line located in x = 0.5. It is 
compared the solution of four models with the analytical solution. Note that the Voronoi model (Model 2D-3) shows the 
best solution, while the largest errors are found through the resistance model (Model 2D-4). Note also that the grid 
refinement did not contribute to increase the accuracy of the results. 
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(a) (b) 

 
Figure 6. Comparison between the temperatures obtained through different models and the analytical solution for (a) 

coarse and (b) fine grid 
 

 
5. Conclusion  
 
 In this paper it was discussed some aspects related to the transmissibility calculation between grid blocks with 
and without local grid refinement. The transmissibility concept was presented and its correspondence with the 
conductance in heat transfer problems was established. 
 Four transmissibility calculation models were analyzed using a two-dimensional heat transfer problem. 
Comparisons between the models results in fine and coarse grids and the analytical solution of the problem were made. 
 According to the results, the model most commonly used in commercial softwares, even though it is exact for 
one-dimensional problems, carries approximation errors, not vanishing when the grid is refined. The error arises 
because only two grid points are used in a situation which does not show local orthogonality.  For these cases, the best 
results occur when the grid is a Voronoi one. In this case there is local orthogonality, a feature of a Voronoi grid, and 
therefore, two-grid points approximation for transmissibility can be used. 
 The methodology presented in this paper can be extended to grids with other local refinement patterns not 
considered here. Besides that other problems with different boundary conditions can be tested, improving our 
understanding. 
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