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Summary. In this work, the flux-corrected transport (FCT) technique is applied to a finite-
volume reservoir flow numerical model, in order to reduce numerical diffusion near 
discontinuities maintaining solutions free of oscillations and other numerical artifacts. This 
simple and powerful technique is based on flux limiters that switch between low-order and high-
order approximations depending on the smoothness of the solution. While in smooth regions the 
high-order approximation is maintained, near discontinuities positivity constraints are invoked in 
order to impose flux restrictions that prevent the formation of nonphysical oscillations. Since 
actual reservoirs exhibit complex geometries and intricate geological features that only can be 
represented accurately with unstructured grids, all developments considered in this work are 
based in a numerical formulation capable of dealing with this type of grids. This formulation 
employs the element-based finite-volume method (EbFVM) for discretizing the differential 
equations that describes multiphase flow in reservoirs. 
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1.  INTRODUCTION 
Nowadays, most of commercial reservoir simulators are still based on the first-order single-

point upstream scheme for the approximation of advection terms. Simplicity and robustness 
matters are generally argued as the main reasons for the persistence of this scheme. Nevertheless, 
it is well-known that the use single-point upstream schemes introduces high levels of numerical 
diffusion that strongly smear front discontinuities generally present in reservoir flow solutions [1]  
[2] [14]. This smearing frequently causes several inaccurate predictions, for example, the 
prediction of early breakthrough times for waterflood processes. The single-point upstream 
scheme is also closely related with another numerical issue in reservoir simulation: the grid 
orientation effect [3]. As upstream value is usually determined between the values of two nodes 
joined by a grid line, a strong dependence on the local orientation of the grid is created using the 
single-point scheme.  

Early attempts to reduce numerical diffusion in reservoir simulation included two-point 
upstream [18] and other second-order schemes [1]. Although these schemes are formally more 
accurate than the single-point scheme, it is not possible to guarantee that they will produce 
numerical solutions free of spurious oscillations and overshoots/undershoots near discontinuities 
[1] [14]. This situation is much more harmful than numerical diffusion because, besides of being 
totally unphysical, oscillations can produce unbounded values for always-positive magnitudes like 
concentration or saturation. A similar dichotomy between numerical diffusion and spurious 
oscillations is found in the simulation of compressible flow and other physical phenomena 
described by hyperbolic equations. The scientific community working in those areas developed 
several numerical techniques, collectively known as high-resolution schemes, for addressing the 
task of increasing the accuracy of first-order solutions, preventing at the same time the formation 
of oscillations in the neighborhood of discontinuities [7]. The basic idea behind those schemes is 
the switching between high-order approximations in smooth regions of the solution and first-order 
in regions of steep gradients and discontinuities. Since that operation requires information about 
the solution at a given time level, high-resolution schemes are necessarily nonlinear [7].  

Some high-resolution schemes have been applied to reservoir simulation (see, for instance, 
references [3] [4] [5] [15]). To our knowledge, all of them were applied to one and/or two-
dimensional problems discretized by Cartesian grids, since most of the high-resolution schemes 
were developed considering exclusively for that type of grids. Until now, it is not completely clear 
which is the best way for extending these schemes to unstructured grids. 

Flux-corrected transport (FCT) is one of the high-resolution schemes more amenable to 
adaptation to an unstructured framework. For this reason, we have chosen FCT as the first 
alternative for including a high-resolution scheme into a finite-volume formulation developed for 
simulating multiphase flow in reservoirs discretized with unstructured grids. Currently, this type 
of grids is being gradually adopted in reservoir simulation, because actual petroleum reservoirs 
frequently exhibit such complex geometries and intricate geological features that only can be 
represented accurately with unstructured grids. The basic FCT technique is based on the 
correction of low-order monotonic solutions by means of antidiffusive fluxes computed in a way 
that a high-order solution would be obtained after correction. However, those antidiffusive fluxes 
are limited to an extent that prevents the introduction of new local extrema into the solution [10]. 
Flux limiters are usually determined employing the local extremum diminishing (LED) criterion, 
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which is a multidimensional generalization of the well-known total variation diminishing (TVD) 
criterion [11].  

The paper is organized as follows. In section 2 we briefly describe our basis formulation 
for two-dimensional reservoir simulation using unstructured grids. This formulation is 
basically an application of the element-based finite-volume method (EbFVM) to the 
discretization of the differential equations modeling multiphase flow in porous media. Section 
3 describes the implementation of the FCT strategy into the numerical formulation. 
Following, in section 4 are presented application examples showing the capability of the FCT 
for reducing numerical diffusion, employing the formulation just described. Finally, some 
concluding remarks are drawn in section 5. 

 

2.  THE ELEMENT-BASED FINITE-VOLUME BASIS FORMULATION 
For the sake of simplicity, we consider a two-phase incompressible and immiscible flow 

model, neglecting any influence of capillary pressure. The numerical techniques introduced later 
for improving the quality of solutions can be transplanted straightforwardly to a more general 
formulation. The mathematical model for that kind of flow can be reduced to a pair of differential 
equations [1] [14], the so-called Buckley-Leverett form of the saturation equation,  

 

 ( ) 0t Ts Fφ +∂ ∇ ⋅ =v , (1) 
 

and the pressure differential equation,  
 

 ( ) 0T P  λ =⋅ ⋅∇ ∇K . (2) 
 

Here, φ  and K are the porosity and the tensor of absolute permeability of the medium, 
respectively. The main variables on each equation are the saturation of water s  and the pressure 
P . Furthermore, λ λ λ+= oT w  is the total mobility (w  stands for water phase and o  stands for oil 
phase), and / Tw  F = λλ  is known as fractional flux function, all of them being functions of the 
saturation. Finally, T ow= +v v v  is the total velocity, a variable that couples the pressure and 
saturation equations, since it can be expressed as [14] 

 

 T T P λ= ⋅− ∇v K . (3) 
 

In order to discretize in space the system of differential equations, the element-based finite- 
volume method (EbFVM) will be considered. This approach follows the basic guidelines of the 
conventional finite-volume method, namely the integration of differential equations over control 
volumes in a way that conservation is automatically enforced. However, a significant 
improvement in flexibility is introduced through the concept of element as the basic geometrical 
entity for the discretization of the solution domain, since in this way the use of unstructured grids 
is readily affordable. Here we only give a very brief introduction to the application of EbFVM, 
more details can be found elsewhere [8] [9] [13] [16]. 

The main geometric entities considered in EbFVM are shown in Fig. 1. The grid is formed by 
elements, which are quadrilateral in this work, they could be triangular also. These entities are 
used for defining the discretized geometry of the solution domain as well as for defining the 
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spatial variation of physical properties of the medium. The unknowns of the problem are 
calculated at the nodes, located at every element corner. Around every node is built a control 
volume, formed by portions of the elements sharing a common node. Every control volume is 
delimited by a certain number of faces, obtained joining the center of every neighboring element 
with the midpoint of its two sides sharing the node around which the control volume is built. 
Normally, a discretized equation for a control volume represents some kind of balance, thus, it 
becomes necessary to compute fluxes across the faces. As surface integrals defining fluxes are 
usually approximated by the midpoint rule, the face center points are also important entities in 
EbFVM and they are commonly known as integration points. 

 
 

   
 

Figure 1 - Main geometrical entities on the element-based finite-volume method. 

 

After integration of differential equations (1) and (2) over a generic control volume, they can 
be approximated, respectively, as  

 

 
1

( ) 0φ
+ ⎧ ⎫− ⋅Δ =Δ + ⎨ ⎬
Δ ⎩ ⎭

∑∑
n n

n np p
ii T ip p

ie e

s s FV
t

v S , (4) 

 

 0( ) ( )λ
⎧ ⎫⎡ ⎤ =⋅⋅ Δ∇⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∑ ∑ n n
ii eT i

e i e
P SK . (5) 

 
Here, subscripts specify the geometrical entities to which variables are related and 

superscripts specify the time level. A forward Euler approximation was considered for 
discretization in time while the mid-point rule was applied for approximating surface integrals at 
control volume faces. In Eqs. (4) and (5), pVΔ  is the volume of the control volume, iΔS  is the 
area vector of a face limiting the control volume, eK  is the permeability tensor (constant inside an 
element) and Δt  is the time-step. The outer summations involve all elements contributing to the 
control volume. On the other hand, the inner summations involve solely the two integration points 
that lies over the control volume faces inside a contributing element. For more details concerning 
to the EbFVM discretization process, see reference [8]. 
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The forward Euler time approximation leads to the well-known IMPES approach [1] [14] for 
solving the discretized equations. This solution scheme is utilized in this work, since is the most 
straightforward way of introducing a flux-corrected transport strategy into the formulation. 
Another solution approach, such as the fully implicit scheme, could be considered also, though. 
The time approximation considered in IMPES decouples the pressure equation from the saturation 
equation and because of this, each equation can be solved independently for its own variable. For 
a given saturation field at time level n , after assembling of Eq. (5) for all control volumes in the 
grid, a linear system of equations for the nodal values of pressure is obtained. Solving this system, 
the corresponding discrete pressure field for time level n  can be determined and, consequently, 
total velocities at integration points ( )n

T iv  can be computed using Eq. (3). Finally, saturation can 
be advanced to the next time level solving Eq. (4) for 1+n

ps  at each node in the grid. The whole 
transient solution for a two-phase displacement problem can be obtained repeating iteratively the 
basic steps outlined above. 

At this point nothing has been stated yet about the spatial interpolation schemes needed for 
relating integration point values to nodal values in Eqs. (4) and (5). Saturation equation is a 
nonlinear hyperbolic equation [14] and, consequently, if we consider a non monotonicity- 
preserving scheme, a formulation prone to develop spurious oscillations could be obtained. 
Therefore, the flux-corrected transport strategy will be used for approximating the advection term 
in Eq. (4), as described in the following section. Pressure equation, on the other hand, is an elliptic 
equation and a second-order scheme, like bilinear interpolation, can be used safely for expressing 
integration point values of pressure gradient and total mobility as a function of corresponding 
nodal values. This is the approach considered in this work for the pressure equation. More details 
about that can be found in references [8] and [13]. 

 

3.  THE FLUX-CORRECTED TRANSPORT STRATEGY 
In this section, the flux-corrected transport strategy will be applied to the saturation equation, 

Eq. (4), of the two-phase model flow outlined in the previous section. The application of FCT 
requires four main ingredients [10]: 

1. A low-order discretization of the differential equation that renders a monotonic 
solution, without overshoots and undershoots but maybe with a strong extent of 
numerical diffusion. 

2. A high-order discretization of the same equation. 
3. Antidiffusive fluxes, defined as the difference between fluxes in the high-order 

discretization and fluxes in the low-order discretization. If those antidiffusive fluxes 
were added to the low-order solution, the high-order solution would be recovered. 
This solution, however, would be prone to develop oscillations near discontinuities. 

4. Flux limiters reducing antidiffussive fluxes to the maximum extent possible without 
introducing oscillations and unphysical values into the solution. 

Equation (4) can be rewritten as 
  

 1( ) ( )
φ+ Δ ⎧ ⎫= −− ⎨ ⎬Δ ⎩ ⎭

∑ ∑ppn n n
p p i

e i e

V
s s f

t
, (6) 
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where ( )n
if  are the fluxes across the faces between the given control volume and its neighbors, 

namely 
 ( ) ( )= ⋅Δn n n

i i T i if F v S . (7) 
 

Considering a given element, such as the one represented in Fig. 2, the interpolated fractional 
flux function at an integration point in a face inside that element can be expressed in general as  

 

 { } [ ] [ ]= nn
i ei e

F c F , (8) 
 

where [ ]ic  is a row-vector of weighting factors associated to the nodal values and [ ]n
eF  is the 

column-vector of nodal values of the fractional flux function at time level n . Nodal values in 
[ ]n

eF  are ordered according to the local numbering scheme shown in Fig. 2.  
 
 

 
 

Figure 2 – Fluxes across the faces of a control sub-volume inside and element. 
The local numbering of nodes and integration points is also shown. 

 
 
If the vector of weighting factors in Eq. (8) corresponds to a low-order interpolation scheme, 

the low-order fluxes would be defined as 
 

 { } { }[ ]( ) ( ) [ ]= ⋅Δn n n
LL i T i i i ee e

cf Fv S . (9) 
 

On the other hand, high-order fluxes would obtained if weighting factors correspond to a 
high-order scheme 

 

 { } { }[ ]( ) ( ) [ ]= ⋅Δn n n
HH i T i i i ee e

cf Fv S . (10) 
 

In our implementation, the single-point upwind scheme was utilized as low-order scheme. 
The weighting factors for this scheme are the simplest possible and are defined by expressions of 
the type 

 

 
[ ]
[ ]

1

1

1

( ) 4

( ) 1

1 0 0 0

0 0 0 1
[ ]

⎧⎪= ⎨
⎪⎩

n

T

n

T

L

if points to node 

if points to node 

   
c

   

v

v
, (11) 
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which is valid for integration point 1, according to the numbering scheme shown in Fig. 2. 
Equivalent expressions for other integration points can be easily obtained considering that, 
according to the scheme, the value at an integration point is equal to the value of the nearest 
upstream node.  

As high-order scheme it was considered a bilinear interpolation, which is formally second-
order [16]. With this choice, weighting factors in [ ]H ic  are equal to the values of bilinear shape 
functions [13] at integration points. For instance, at integration point 1 we have, 

 

 1
3 1 1 3
8 8 8 8

[ ] ⎡ ⎤= ⎢ ⎥⎣ ⎦Hc . (12) 
 

The antidiffusive fluxes can be introduced now as 
 

 { } { } { }( ) ( )⎡ ⎤= − −⎣ ⎦
n  n n
i H i L ie e e

a f f . (13) 
 

At this stage, the most essential component of FCT, namely the flux limiters, must be 
defined. In order to do this, an intermediate solution for saturation must be obtained employing 
the low-order scheme 

 ( )
φ

⎧ ⎫Δ= − ⎨ ⎬Δ ⎩ ⎭
∑ ∑n n

p p L i
ep ip e

ts s f
V

 (14) 

 

Flux limiters in FCT are designed in a way that a local maximum in the solution cannot 
increase and a local minimum cannot decrease. A scheme that possesses this property is said to be 
local extremum diminishing (LED) [10] [11]. It guarantees positivity, because if a numerical 
solution is positive everywhere at certain stage, it will remain positive all the time since the global 
minimum cannot decrease and consequently it cannot get negative values. The LED property 
precludes also the birth and growing of spurious oscillations [11]. 

In order to guarantee that limited antidiffusive fluxes satisfy the LED criterion, local upper 
and lower bounds for the nodal saturation values must be stated. These bounds can be determined 
searching the local minimum / maximum values of the intermediate solution given by Eq. (14), in 
the following way 

 

 ( )
max
min max

min , ∈= Spp k ks s     , (15) 

 

where Sp  is the set of nodes in the stencil associated to node p , or in other words, the set of 
nodes at the vertices of all elements sharing the node p.  

After calculating the upper and lower bounds for each nodal value of saturation, the 
maximum admissible increment and decrement in relation to the intermediate solution can be 
computed, 

 
max
min± = −pp psQ s . (16) 

 

Since the increment of nodal values of saturation is caused by positive antidiffusive fluxes 
and decrement is caused by negative ones, these effects can be examined separately. In order to 
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do this, other two sets of auxiliary quantities must be defined. These are the sum of all positive / 
negative antidiffusive fluxes associated to each control volume, 

 

 ( )max
min 0,± ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

∑ ∑ n
p i

e i e

P a . (17) 

 

In order to prevent the creation of new local extrema, the positive / negative antidiffusive flux 
{ }n  

i ea  should be multiplied by [10] 
 

 
( )min 1, / , 0

1, 0

± ± ±
±

±

⎧ ≠⎪= ⎨
=⎪⎩

pp p
p

p

f

if

Q P    i  P
R

 P
, (18) 

 
However, since an antidiffusive flux influences nodal values from two neighbor control 

volumes (a positive flux for a given control volume is negative for its neighbor and vice versa), 
the minimum of the two correction factors should be kept, according to the sign of the flux [10], 

 

 { }
( ) { }
( ) { }

min , , 0

min , , 0
β

+ −

+ −

⎧ ≥⎪= ⎨
<⎪⎩

n
p m i e

i e n
pm i e

f

f

 R R    i  a

 R R    i  a
. (19) 

 
In this equation, p  and m  are the nodes associated to two control volumes sharing the face 

where integration point i  is located, as depicted in Fig. 3.  
 
 

 
Figure 3 – Neighbor nodes for a given integration point inside an element. 

 
 
After completing the sequence of calculations sketched above, the flux limiters will be ready 

for using in the calculation of the final solution for the saturation at time level 1+n . This solution 
for every node is given by 

 

 1 β
φ

+ ⎧ ⎫Δ= + ⎨ ⎬Δ ⎩ ⎭
∑ ∑n n   

p p i i
e ipp e

ts s a
V

 (20) 
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Since flux limiters were designed to satisfy the LED criterion, the discrete approximation of 
the saturation field computed with Eq. (20) will be monotonic, always positive and free of 
overshoots / undershoots. Despite the fact that the inclusion of FCT requires some extra steps in 
the IMPES algorithm outlined in section 2, such as the computation of antidiffusive fluxes, the 
computation of an intermediate solution for saturation and the computation of flux limiters, those 
steps are in general considerably less time-demanding than the solution of the linear for the 
pressure. But this a little price for obtaining much sharper fronts in the numerical solutions. 
Numerical experiments show that the front thickness in numerical solutions obtained employing 
FCT are approximately half of the thickness in a solution without FCT. Some results showing this 
are presented in the following section. 

 

4.  APPLICATION EXAMPLES 
As first example, a quarter of the five-spot configuration [18] [19] was considered for 

simulating a waterflood. In general, the solution for the saturation field is a compound by a shock 
and a rarefaction [1]. The most demanding test for our formulation would be a situation where 
only a shock with the maximum strength possible exists, the so-called piston-type displacement 
[19]. This situation can be modeled prescribing, for instance  

 
 ( ) =F s s  (21) 
 

 ˆ ( )
( )1

λ =
− −T

Ms
M sM

 (22) 

 

where λ̂ T  is the total mobility normalized by the maximum value of the oil mobility, whereas M  
is the ratio of the maximum water mobility to the maximum oil mobility.  

Two grids were considered for this test, a Cartesian one and a non-orthogonal unstructured 
one, as depicted in Fig. 4. An injection well is located in the lower left node of each grid, whereas 
a production well is placed at the upper right node. A constant volumetric flow-rate of water is 
injected through the injection well.  

 
 

 
 

(a) (b) 

Figure 4 – (a) Cartesian 20 20× -element grid and (b) unstructured 440-element 
grid, used for discretizing a quarter of the five-spot configuration. 
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Figure 5 shows four snapshots of the time evolution of the water-oil front, corresponding to 
four numerical solutions of the five-spot problem sketched above. The fractional flux function and 
total mobility were set according Eqs. (21) and (22), with a mobility ratio 2.5=M  in all cases. 
The first two rows compares the solutions obtained with the 20 20× -element Cartesian grid, one 
using the basic formulation without FCT whereas the other using the formulation including the 
FCT strategy described in section 3. An equivalent comparison is made in the third and fourth  
 

 
 0.4 PVI 0.5 PVI 0.6 PVI 0.7 PVI 

 

(a
) 

 
 

(b
) 

 
 

(c
) 

 
 

(d
) 

 
 

Figure 5 – Saturation isolines at four time levels of the solution of the five-spot problem obtained (a) 
without FCT and (b) with FCT, in the Cartesian 20 20× -element grid; (c) without FCT and (d) with FCT 
in the unstructured 440-element grid. 



Fernando S. V. Hurtado, Clovis R. Maliska and António F. C. da Silva 

 11

rows, which correspond to solutions obtained with the 440-element unstructured grid, again one 
without FCT and the other with FCT. Both comparisons demonstrate clearly that a significant 
amount of numerical diffusion has been removed by the application of the FCT strategy. The 
thickness of the front in the solution with FCT is roughly the half of the thickness in the solution 
with the basic formulation. This behavior is observed in both grids, the regular Cartesian and the 
irregular unstructured, in fairly the same manner. 

As second example, a water-oil displacement in a reservoir with a more complex geometry is 
considered. The quadrilateral unstructured grid utilized in the simulation is depicted in Fig, 6. 
Local refinement is considered in regions around wells (one injection well and two production 
wells) since usually more accurate solutions are required in those regions. This is one of the main 
advantages of using unstructured grids, because small elements can be concentrated only in 
localized interesting areas without increasing excessively the size of the whole discrete problem. 
Moreover, with unstructured grids, the transition between refined and coarse regions can be made 
smoothly, in order to avoid introducing further discretization errors associated to element sizes 
varying abruptly. A geological fault also present into the considered reservoir was modeled as an 
internal impervious boundary. The grid was enforced to conforming to the domain boundary, 
modeled also as an impermeable boundary, as well as the internal fault. 

       
 

 

 
Figure 6 – Unstructured grid for a reservoir considered in the second example. 

 
  

Results of simulations performed with the same fractional flow function and total mobility as 
the previous example are shown in Figs. 7 and 8. These figures shown again two solutions, one 
obtained without considering FCT and other including it in the formulation. As can be seen, once 
more an enhancement in the sharpness of the front is evident in the solution with FCT. Although 
in this case the thickness of the front differs from one region to another due to the variability of 
the element size in the grid, the front is clearly thicker in the solution without FCT. This example 
demonstrates that the formulation including FCT is proficient in reducing numerical diffusion in 
fully unstructured grids discretizing complex geometries. 
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Figure 7 – Evolution of the normalized saturation field obtained with the basic formulation without FCT. 

 
 

 
Figure 8 – Evolution of the normalized saturation field obtained with the formulation including FCT. 

 
 

5.  CONCLUDING REMARKS 
In this work, the flux-corrected transport (FCT) strategy has been applied to a finite-volume 

unstructured-grid formulation for reservoir simulation. The application examples presented shown 
that FCT is an effective technique for reducing numerical diffusion in numerical simulation, 
preventing at the same time the birth and growing of spurious oscillations. The approach 



Fernando S. V. Hurtado, Clovis R. Maliska and António F. C. da Silva 

 13

considered in this work for implementing FCT is rather simple and fairly increases the 
computational effort for solving the whole set of discretized equations employing the IMPES 
algorithm. Future works must address the extension of the methodology to the fully implicit 
approach. Some authors have been shown that this extension is feasible for models like the Euler 
equations for compressible flow. 
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