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INTRODUCTION 

Two-phase gas-liquid annular flow is one of the most 
common patterns encountered in internal flows in nuclear and 
oil industries processes. This pattern occurs at moderate to 
high gas superficial velocities and it is characterized by the 
existence of a liquid film adjacent to the wall and a gas core 
flowing in the center of the duct. A wavy interface exists 
between both phases and its morphology depends on the gas 
and liquid mass flow rates. 

Most common approaches for gas-liquid turbulent flow 
assume that the velocity profile within the liquid film is 
obtained from logarithmic wall law relations, similar to those 
for single phase turbulent flow. Some researchers ([3]; [4]) 
presented more sophisticated models considering the liquid 
film as to be divided into two sub-layers: a continuous liquid 
layer next to the wall which responds to the law-of-wall, and a 
wavy one next to the liquid-gas interface which makes use of a 
correlation for friction factor in rough tubes to obtain the 
interfacial shear stress. 

Unlike previous approaches, the present model makes no 
use of empirical closure correlations to relate shear stresses, 
pressure gradient and film thickness nor assumes any velocity 
profile for the liquid film. It provides an accurate, simple and 
complete numerical computation of all the hydrodynamic 
parameters, requiring just gas and liquid mass flow rates as 
input data to solve mass and momentum conservation 
equations. As the modeling is based on the solution of 
conservation equations with its boundary conditions and 
interfacial constraints, its application is broad, allowing for 
instance, the solution of developing annular flow for non-
equilibrium case. Its extension for heat transfer computations 
is also straightforward. The success of the algorithm relies on 
two main features. First, the coupled solution of the liquid film 
and gas core velocity fields, which inherently satisfies the 

continuity of the velocity and shear stress fields at the 
interface, and, second, the pressure gradient calculation 
through an iterative procedure based on the fulfillment of the 
global mass conservation of the gas core. Then, no use is 
made of the global force balance that relates pressure gradient 
and wall shear stress. Instead, this balance is used in the model 
validation stage for verification of the global force equilibrium 
in fully developed conditions. 

MODEL DESCRIPTION 

The proposed model divides the flow domain in two 
distinct regions shown in Figure 1, the liquid film (f) and the 
gas core (c); the former is treated as a continuous, fully 
turbulent layer having no entrained bubbles, with a mean film 
thickness δ. The mean film thickness represents the time 
averaged value for a given axial position. The wavy nature of 
the interface and its effect on the interfacial shear stress is 
taken into account through the turbulence model as will be 
described later. In addition, as stated before, one of the main 
hypotheses considered is that the axial diffusive fluxes can be 
neglected in both, gas core and liquid film. Thus, the resulting 
approximate equations can be solved through a marching 
process along the axial coordinate of the duct. For axis-
symmetric flow, as it is the case, this means that, instead of 
solving a 2D model with r-z coordinates, a sequence of 1D 
profiles along radial direction is solved, marching along z 
direction. In terms of CPU requirements this approach is much 
less demanding allowing for the use of fine enough meshes in 
the liquid film to fully resolve velocity and shear stress 
profiles within it, even for very thin films.  
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 Figure 1: Model parameters 

The gas core is considered to have entrained liquid 
droplets, which are assumed to displace at the same velocity 
of the gas phase. Govan's correlation ([1]) was used to 
compute the entrained fraction. A systematic comparison 
among the main entrainment correlations was developed in [2] 
and this correlation was found to perform better, at least, for 
the conditions range for which the model was validated (see 
[3]). Having the entrained fraction, the gas core properties are 
calculated through the homogeneous flow equations.  

The radial velocities are neglected within the liquid film 
even for the developing flow. Using the continuity equation, it 
can be shown that the radial velocity within the liquid film is 

of order of UI times dδ/dx, where dδ/dx is known to be of 
order of 1e-5. Then, radial and axial velocities are computed 
in the gas core and only axial velocities in the liquid film. This 
does not mean that velocities within the liquid film are 
invariant along the axial direction, as these are coupled though 
the interface with gas core and, additionally, the film thickness 
varies along the axial direction. In addition, it is considered 
that pressure gradient is constant along the transverse area of 
the duct and shared by liquid film and gas core. 

In summary, modeling is carried out under the following 
assumptions: 
1. Steady-state, co-current, vertical, annular flow. 
2. Axis-symmetric parabolic flow (axial diffusive fluxes are 

neglected) 
3. The radial velocity is neglected within the liquid film 
4. There is no slip between the gas and the entrained liquid 

droplets.  
5. Fluid properties are assumed to be constant, including gas 

density, i.e., all phases are considered incompressible. 
6. Pressure is only function of the axial coordinate of the duct 

Governing Equations 

Under assumptions discussed in the precedent section, the 
time-averaged linear momentum equations for the flow in the 
gas core and the liquid film are given by, 
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where, 
eff

f
µ  and eff

c
µ  are the liquid film and gas core 

effective viscosities, respectively, uf  and uc are the liquid film 
and gas core velocities and dp/dz is the pressure gradient 
which is shared by both phases and is considered to be 
constant across the duct  cross-sectional area. The differential 
mass conservation equations for the gas core is given by, 
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Under the assumption of parabolic flow, the radial velocity 
component in the gas core is calculated explicitly from the 
mass conservation equation (Eq. (3)).  

The boundary conditions for these equations are, 
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The continuity of velocities and shear stresses at interface 
are respectively given by Eqs. (6) and (7). Once the radial 
velocities are neglected in the liquid film, this component is 
considered to be zero at the interface for the gas core,   
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In these equations, τl and τc are the liquid film and gas core 

shear stresses, respectively, and uI and τI are the interfacial 
velocity and shear stress. 

The mass flows within gas core and liquid film are 
calculated by the integration of the velocity profiles as, 

0

2 ( )

R

c c cm u r r dr

δ

πρ
−

= ∫ɺ  (8) 

2 ( )

R

f f f

R

m u r r dr
δ

πρ
−

= ∫ɺ  (9) 

where ρl  and ρc are the liquid film and gas core densities, 
respectively. These relations represent the global mass 
conservation for the gas core and liquid film and are used in 
the solution algorithm, together with momentum conservation, 
for pressure gradient and film thickness calculation. 

Numerical Solution 

The momentum equation for each region is integrated in its 
corresponding domain using the Finite Volume technique. An 
independent mesh with a fixed number of volumes for each 
region allows refinement within the liquid film. The gas-liquid 
interface is positioned between the last gas-core volume (Nc) 
and the first liquid film volume (Nc+1), as shown in Fig. 2 .  

W P E

δR-δ

r

z

ew

CORE  FILM
WALL

CENTER
INTERFACE

s

S

∆z
Nc Nc+1

∆rf∆rc

 

Figure 2: Control volumes for finite volume integration 



 

Along the iterative procedure, the film thickness varies 

each time it is corrected, so ∆rl and ∆rc are adjusted since the 
number of volumes within liquid film and gas core remains 
constant along the calculations. 

Integration of Eq. (1) in volume P (Fig. 2) gives, 
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where re and rw are the radial positions of volume faces.  

A central differencing scheme (CDS) for interpolation of 
the velocity gradients which appear in the viscous terms and 
upwind differencing scheme (UDS) for the convective terms 
was used. After collecting terms, this results in the following 
algebraic equation for the discrete momentum conservation 
within volume P, 
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The corresponding for the liquid film volumes can be 
obtained by straightforward analogy but considering that 
convective momentum transport in radial direction is zero. 
The use of upwind scheme in the axial momentum transport is 
justified once the axial diffusive fluxes have been neglected 
and only convection is present in the axial direction. On the 
other hand, in the radial direction both convection and 
diffusion are present, but as already stated, radial velocities 
are small and thus diffusion dominates the radial momentum 
transport. In addition, very fine meshes are used in the radial 
direction, and the use of first order scheme for the convective 
terms is also appropriate.  

A key point of the numerical algorithm is the interfacial 
coupling which is embedded into the same equation system, 
i.e., the momentum equation for both, gas core and liquid film 
are solved in one linear equation system. To integrate Eqs. (1) 
and (2) within volumes contiguous to the interface, Ng and 
Ng+1 in Figure 2, the continuity of momentum flux has to be 
ensured by finding a single expression to evaluate the 
interfacial shear stress in both volumes, as  
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To accomplish this, a procedure described in [4] for 
averaging non-uniform diffusion coefficient is used. An 
expression for an equivalent interfacial viscosity is derived out 
of the continuity of shear stress, resulting in, 
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Then, the shear stress is obtained as, 
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where 
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The effective viscosity, which is a function of the radial 
position, is stored at the volume faces in a staggered grid. This 
simplifies discretization since the viscosities are required at 
the volume interfaces to calculate momentum fluxes. So, the 
viscosities can be written as, 
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where, µc
eff

 and µf 
eff

 can be obtained by any turbulence model 
that is adequate for annular flow. In this paper a modification 
of a differential turbulence model is proposed, as described 
below. Nevertheless, it is important to emphasize that the 
solution algorithm hereby proposed is independent of the 
turbulence model and any turbulence model based on eddy 
viscosity concept can be used. In this work, an algebraic 
turbulence model proposed by [5] was also implemented into 
the solution algorithm for comparison. For the case of laminar 
flow without entrainment the viscosities will simply be the 
ones of the liquid and gas. In addition the algorithm can be 
used for the computation of liquid-liquid annular flows, as 
described in [2]. 

Velocity fields for liquid film and gas core, for a give axial 
position are solved in a single matrix equation simultaneously, 
as schematically shown in Eq. (17), satisfying the momentum 
equations and boundary conditions together with velocity and 
shear stress continuity at the interface, for given pressure 
gradient and film thickness. The resulting matrix has three 
non-zero diagonals and can be easily solved by the Tri-
Diagonal Matrix Algorithm - TDMA. 
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Solution Algorithm 

The flow chart shown in Figure 3 summarizes the solution 
procedure. The input data consist of mass flow rates of each 
phase, pressure gradient at the entrance and initial entrained 
fraction. Additionally, fluid properties, tube dimensions and 
numerical parameters such as convergence tolerance and mesh 
size, have to be specified.  

For a given axial position, the pressure gradient and film 
thickness calculated in the previous section are used as initial 
guess. In the case that only the fully developed (equilibrium) 
condition is of interest, an initial guess for these parameters 
must be given. An iterative procedure is used to correct the 
pressure gradient and film thickness in order to satisfy 
momentum and global mass conservation equations together 
with the force balance at the interface. This procedure works 
as follows: 

For a given film thickness the external loop starts 
calculating the position of the volume centers and faces for the 
whole domain, gas core and liquid film. Then, the fraction of 
liquid entrained and gas core properties are calculated using 
Govan's correlation and considering homogeneous flow within 
the gas core.  

Having the pressure gradient (guessed or from the previous 
section), the internal loop first calculates the effective 



 
viscosity for both, gas core and liquid film, in the case of 
turbulent flow, using the turbulence model described in the 
next section. Equation system (17) is solved to obtain the 
velocity profiles of liquid film and gas core Having the gas 
core velocities, the gas core mass flow rate is obtained using 
Eq. (8) and the pressure gradient is adjusted to satisfy the 
known gas core flow rate through a procedure similar to the 
one proposed by [6]. To correct the pressure gradient, this 
algorithm uses the error between the mass flow rate calculated 
from the velocities obtained from momentum equations and 
the given value. The updated value is again used in the 
momentum equation to obtain new velocities. This process is 
repeated until the total mass flow rate within the gas core is 
satisfied. The total mass flow of the gas core in each axial 
position is given by the gas mass flow and the entrained liquid 
droplets.  
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Figure 3: Solution Algorithm 

Once the velocity fields which satisfy the pressure gradient 
for a given film thickness are calculated, the turbulence fields 

(k and ε) are updated. This step also requires iterations as 
turbulence variables depend upon velocity fields and vice-
versa. After convergence of the internal loop, the velocity 
fields and pressure gradient satisfy momentum equation for a 
given film thickness.  

The next step corrects the liquid film thickness to satisfy 
the mass flow rate of the liquid film using Eq. (9). As the 

number of volumes in each domain is constant, values of ∆rc 
and ∆rf change, as well as the positions of volume centers and 

faces. As the correction of δ affects the velocity field of both, 
gas core and liquid film, the algorithm re-enters in the internal 

loop, to find the pressure gradient that satisfies momentum 
equation for the new film thickness. This process is repeated 
until convergence of the whole system, obtaining velocity 
fields, film thickness and pressure gradient that satisfy 
momentum and mass conservation equations, together with 
interfacial velocity and shear stress continuity.  

Although this algorithm has two correction loops, it quick 
converges for the cases used for validation, even starting from 
guessed values of pressure gradient and film thickness very far 
from the converged ones.  

It is important to highlight that the coupled solution of 
liquid film and gas core velocity fields (Eq. (18)) satisfies the 
continuity of shear stress at the interface and, together with 
global mass conservation for the gas core (Eq. (9)), provide a 
pressure gradient dependent upon the gas core mass flow rate. 
In turn, the liquid film velocity field, which determines the 
wall shear stress, is also ruled by the pressure gradient, which 
is shared by phases (i.e., it is constant along the cross section). 
Therefore, the intimate relationship between the wall shear 
stress and pressure gradient is fulfilled without explicitly 
making use of any equation to relate them within the solution 
process. This is one of the key points of the algorithm because 
the triangular relationship between the liquid film mass flow 
rate, the wall shear stress and the film thickness is successfully 
solved making no use of empirical relations for wall or 
interfacial friction factor nor assuming any liquid film velocity 
profile. 

Turbulence model 

A differential turbulence model is proposed herein based 

on a modification of the low Re k-ε model, in order to take 
into account the effects of the interface. This model was 
implemented in the framework of the algorithm described in 
the precedent section. 

As previously stated, usual differential approaches for 

annular flow solve the turbulent fields (usually k and ε) within 
the gas core and assume a known velocity profile within the 
liquid film, like the logarithmic or 1/7 profile ([7]; [8]).The 
shear stress at the interface or, alternatively, at the wall (most 
models assume that these are equal) is calculated through a 
correlation for a rough wall, or from a force balance, knowing, 
a priori, the pressure drop.  

An algebraic turbulence model was presented in [5] 
considering constant eddy viscosity along the liquid film and a 
linear distribution along the gas core, using experimental 
values of wall shear stress and film thickness to calibrate the 
model. In a recent paper [9] the model was extended to other 
fluids and evaporating flows. Nevertheless, in any case, the 
applicability of the model will depend on the 
comprehensiveness of the data base used for calibration. 

The objective of the present model is to compute all 
annular flow parameters, which include pressure drop, film 
thickness and interfacial shear stress, making no use of 

correlations or calibration data. Then, a low Reynolds k-ε 
model was used in both, liquid film and gas core to compute 
the eddy viscosity. The transport equations for turbulence 

variables, k and ε and wall damping functions are not 
presented here for shortness. Further details can be 
encountered in [10]. 

A special treatment is proposed for the specification of k 

and ε at the interface, based on previous models for stratified 
flows, to account for the discontinuity of these variables, in 



 
virtue of the density and viscosity difference of phases. 
Assuming the turbulence damping at the interface due to 
surface tension is small, it is proposed that, 
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A similar approach was proposed in [11] to compute 

interfacial values of k and ε for stratified flows, using the 

liquid height as the characteristic mixing length, instead of δ. 

The computation of ε at the interface given by equation (19) 
corresponds to the values obtained by models based on 
Prandtl mixing length (see, for instance, [12]). Different 
values have been proposed for mixing length proportionality 

constant, cl. Here, the value of 0.41 was used (i.e., lm=κ δ). 
The constant cl is in fact an adjustable parameter, but also 

does Cµ and other turbulence model constants. This means 
that, although some adjustable parameters are used in 
differential turbulence models, these are much more 
physically meaningful than simply adjust the eddy viscosity or 
equivalent wall roughness to fit experimental values of 
pressure drop. Further details of the implementation of the 
differential turbulence model can be found in [10].  

The algebraic model presented in by Cioncolini [5] was 
also implemented in the context of this algorithm, in order to 
validate the numerical solution and for results comparison 
with the proposed turbulence model. 

RESULTS AND MODEL VALIDATION 

The numerical algorithm hereby presented was already 
extensively validated against an analytical solution for laminar 
annular flow (see[10], [13]). Thus, the validation here will be 
focused on the application of the algorithm for turbulent 
annular flow. The model is validated with results for 
developing and equilibrium flow presented by Wolf et all. 
([3]). Fist, the predicted pressure drop and film thickness for 
fully developed conditions for various gas and liquid mass 
fluxes are compared with experimental data. As already 
stated, Cioncollini's ([5]) algebraic turbulence model was also 
implemented in the context of the presented algorithm for 
comparison. Figure 4 presents a comparison of the predicted 
and experimental pressure gradient for developed flow, using 

the low Reynolds k-ε, with the proposed treatment at the 
interface and Cioncollini's algebraic model. In Figure 5 the 
predicted and experimental values for film thickness are 
compared. 
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Figure 4: Predicted vs. Experimental pressure gradient. (a) k-ε 
model with interfacial treatment. (b) Cioncollini algebraic 
model 
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Figure 5: Predicted vs. Experimental liquid film thickness. (a) 

k-ε model with interfacial treatment. (b) Cioncollini algebraic 
model 

Results using Cioncollini turbulence model better predicts 
pressure gradient and the differential model proposed in this 
work better predicts the film thickness. This could be due to 
the fact that turbulent viscosity in Cioncollini model eddy 
viscosity is fitted using experimental data for pressure 
gradient. On the other side, velocity profiles in Cioncollini 



 
model within the liquid film are assumed to be linear, once the 
turbulent viscosity is assumed constant, while, in the model 
proposed herein, the resulting profile is similar to the more 
realistic log-law profile, which is used through Eq. (9) to 
predict the film thickness. 

Figures 6 and 7 present the values of local pressure 
gradient, for developing annular flow, compared with Wolf 
([3]) experimental data 
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Figure 6: Evolution of the pressure gradient for two flow 

conditions 
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Figure 7: Evolution of the film thickness for two flow 

conditions. 

SUMMARY AND CONCLUSIONS 

A solution algorithm for the calculation of two-phase 
turbulent annular flow was successfully implemented. It solves 
the triangular relationship between the liquid film mass flow, 
wall shear stress and film thickness through an iterative 
procedure, taking advantage of the coupled solution of gas 
core and liquid film velocity profiles. In this way, no empirical 
closure correlation is used, and no velocity profile is assumed 
for the liquid film. Among the advantages of this algorithm, 
the solution of the velocity profile within the liquid film, 
instead of assuming a known shape profile, allows for the 
integration of differential turbulence models, which are able to 

incorporate the complex physics of near wall flow within the 
film, which could be different from single phase flows, from 
which the classical low-law profile is usually borrowed for 
annular flows. 

A differential two-equation turbulence model was 

incorporated into the algorithm, based on a low-Re k-ε model, 

setting k and ε values at the interface, based on the continuity 
of turbulent stress at the interface and considering the 
damping of turbulent fluctuations due to density jump at the 
interface.  

The model compares fairly well against experimental data 
and, although some parameters are better predicted by models 
based on experimental data fitting, as Cinoncolini's algebraic 
model ([5]), its applicability is much broader, once no global 
adjustable parameters are used, other than turbulence model 
coefficients. 
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