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Abstract  
 

A one-dimensional finite volume formulation is proposed for solving coupled poroelastic problems. The pressure 

oscillations arising under undrained consolidation condition is addressed and a new stabilization technique is proposed. 

Stabilization terms are obtained by employing improved interpolation functions for the face displacements, which take 

the pressure field into account. The stabilized and unstabilized formulations are compared with benchmark solutions, 

showing that the stabilization terms does not degenerate the solution. They also show that stabilized formulation 

effectively eliminate the pressure oscillations, despite introducing numerical diffusion to the solution. Moreover, a 

convergence analysis shows an overall second-order accuracy for both pressure and displacement. 

 

 

1. Introduction 
 

 Geomechanical problems have been studied since the first mathematical model developed by Terzaghi (1923) 

and later improved by Biot (1941) for three dimensions. The differential equations of the mathematical model comprise 

the mass conservation equation for fluid flow in deformable medium and the stress equilibrium equations considering 

the pore pressure influence. The solution of these equations is still a challenge for a number of reasons. Since analytical 

solutions are available only for very simplistic problems (Terzgahi, 1923; Mandel, 1953; Cryer, 1963), numerical 

techniques must be applied in order to obtain approximate solutions. Due to its conservativeness property and its ability 

to treat hyperbolic equations, the Finite Volume Method (FVM) is commonly employed by commercial reservoir 

simulators (IMEX, 2008; Schlumberger, 2011) to solve multi-phase flows in porous media. On the other hand, for 

structural problems, including geomechanics (Gambolati and Freeze, 1973a,b), the Finite Element Method (FEM) has 

been mostly applied due to its strong mathematical background (Zienkiewicz, 1991). Although several authors have 

investigated the coupling between commercial geomechanical and reservoir simulators (Settari et al., 1994; Tran et al., 

2004), mixed finite element formulations have been presented for solving coupled geomechanical problems (Gai, 2004; 

Jha and Juans, 2007; Ferronato et al., 2010). Moreover, the FVM has been successfully applied for solving both fluid 

flow and solid mechanical equations by dal Pizzol and Maliska (2012) using Cartesian staggered grids. 

 Another problem may arise during undrained consolidation condition, which generally occurs at the very 

beginning of the simulation near drained boundaries or at the interface between materials of different permeabilities 

(Vermeer and Verruijt, 1981). In this situation, formulations that use interpolations of equal order for both pressure and 

displacements are prone to suffer from pressure instabilities when the minimum time step requirement, discussed by 

Vermeer and Verruijt (1981), is not satisfied. Locally refining the grid would theoretically avoid this problem, but the 

increase in the number of unknowns cannot be neglected. Another solution is to employ mixed formulations with 

interpolation functions of higher order for the displacements than those of the pressure field. Ferronato et al. (2010) 

obtained good results employing the lowest order Raviart-Thomas interpolation for pressure and fluxes and linear 

interpolation for displacements. In this manner, the stability requirements were satisfied and the pressure instabilities 

were completely mitigated, but the increase in the number of unknowns was still a problem. Alternatively, many authors 

seek for stabilized formulations, which consist of adding diffusive terms into the coefficient matrix in order to avoid, or 
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at least attenuate, the pressure oscillations. Authors as Trutty and Zimmermann (2006), Preisig and Prévost (2011) and 

Choo and Borja (2015) have developed stabilization techniques for solving coupled poromechanics under the 

framework of the finite element method. 

 In this paper, a stabilization technique is proposed under the framework of the finite volume method. The 

stabilized formulation is obtained by employing an improved interpolation function for displacements, obtained by the 

so called Physical Influence Scheme – PIS, proposed by Schneider and Raw (1987). An analogy between 

poromechanics and fluid mechanics is developed, which gives a physical support for the use of PIS in poro-elastic 

problems. As a preliminary study, a one-dimensional formulation is implemented and verified against two benchmark 

problems. Moreover, the one-dimensional case provides a very clear physical interpretation about the interpolation 

function. 

 

 

2. Mathematical Model 
 

 An isotropic poro-elastic medium with porosity,  , and compressibility, 
sc , fully saturated with a fluid of 

density, fρ , and compressibility, 
fc , is considered here. Assuming isothermal condition, neglecting the gravitational 

effects and considering small displacements, according to Biot’s consolidation model (Biot, 1941) the one-dimensional 

governing equations can be expressed as a function of the displacement u  and the pore pressure p  as the following, 

 

  
2

2

d u dp
λ 2G α

dxdx
     (Stress equilibrium)     (1) 

 

 
p k p du

ψ q α
t x μ x t dx

      
     

      
  (Mass balance)      (2) 

 

where G  and λ  are the Lamé parameters, α  is the Biot’s coefficient,  f sψ c α c    , μ  is the viscosity of the 

fluid, k  is the absolute permeability of the porous medium and q  is the volumetric rate injected or removed. The initial 

conditions of displacement and pressure fields ( uo  and po , respectively) are known. Equations 1 and 2 are subjected to 

Dirichlet and Neumann boundary conditions for pressure and displacements. 

 

 

3. Numerical Formulation 
 

 The algebraic representation of Equations 1 and 2 are obtained through the Finite Volume technique by 

integrating the differential equations over the control volumes of a one-dimensional grid, as that depicted in Figure 1. In 

this grid, the cross-section area equals to 1 and the unknowns (pressure and displacement) are calculated at the nodal 

points W , P  and E , where the control volumes are constructed. The control volume centered at the node P , for 

example, is bounded by the faces w  and e , placed at distance of x 2  from node P .  

 Regarding to the nomenclature, the variables evaluated at the grid nodes carries an uppercase subscript, while a 

lowercase subscript is used to denote when the variable is evaluated at the interface. For example, 
wu  indicates a 

displacement evaluated at the face w , while 
Ep  indicates a pressure evaluated at the node E . 

 

 
 

Figure 1. One-dimensional control volume. 

 

 Integrating Equation 1 between the interval wx  and ex , one obtains, 

 

     
e e

w w

2

e w2

e w

d u dp du du
λ 2G dx α dx        λ 2G α p p

dx dx dxdx

x x

x x

 
       

 
      (3) 
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where both pressure and displacement derivatives should be evaluated at the control volume’s faces w  and e . Using 

Central Differencing Scheme (CDS) to evaluate these terms the following expression is obtained, 

 

 uu uu uu up up

p P w W e E w eA u A u A u A p A p 0W E            (4) 

 

with the coefficients given by, 
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w e

α
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2
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 Equation 4 is the algebraic representation of Equation 1 for the control volume centered at the node P . In other 

words, it represents the balance of forces over this control volume.  

The algebraic balance of mass over the control volume P  is obtained by a time integration between the instants 

t  and t t , followed by the same spatial integration performed for the stress equilibrium equation, that is, 

 

 
e

w

t t

t

p k p du
ψ q α dxdt 0

t x μ x t dx

x

x

        
       

       
         (6) 

 

 Employing a first-order accurate backward Euler scheme to evaluate the time integrals and CDS for the 

pressure derivatives, Equation 6 becomes, 

 

    pp pp pp o o o

p P e E w W e w P e w p

α α ψ x
A p A p A p u u q x u u p

t t t


        

  
     (7) 

 

where the superscript º indicates the variables evaluated in the previous time instant, 
Pq  represents a source or sink 

imposed at the node P and the coefficients are given by, 
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p

k kψ x
A

t μ x μ x


  

  
  pp e

e
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A
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w
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A
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    (8) 

 

 Equation 7 requires the evaluation of the face displacements (
wu ,

eu , o

wu  and o

eu ) as a function of the nodal 

displacements, which are the unknowns of the problem. The interpolation functions used to evaluate these face 

displacements are the key point of this work. Even if their choice can be made based on a purely mathematical 

perspective, taking the physics of the poromechanics into account can provide some benefits to the formulation. In the 

following chapter, a discussion on this subject is developed. 

 

4. Pressure-Displacement Coupling 
 

 The main point of this chapter is to identify an important analogy between the coupling of variables in 

poromechanics and fluid mechanics, which can allow taking advantage of some advances developed for fluid flow 

problems. The pressure-velocity coupling is one of the key problems faced by fluid mechanics analysts when solving the 

Navier-Stokes equations. This is still an unresolved issue, but large progress has been made in the last four decades, 

starting with the adoption of staggered grids (Harlow and Welch, 1965), where pressure and velocities are calculated at 

different positions over the grid. In this approach, the velocity field satisfies both momentum and mass conservation, 

since it is calculated where they are required for mass conservation, thus avoiding velocity interpolation. In addition, in 

this variable arrangement, pressure is calculated at the faces of the control volumes where momentum balance is 

enforced, improving the accuracy of the pressure gradient computation. Staggered grids, therefore, promote a very tight 

coupling between pressure and velocity fields. On the other hand, if pressure and velocities are located at the same 

point, the velocities that satisfy the mass balance are not available at the control volume’s faces, requiring an 

interpolation between the nodal velocities. If this velocity interpolation is not properly done, the pressure and velocity 

fields may result loosely coupled, originating the well-known checker-board pressure problem (Patankar, 1981). There 

are a number of strategies for obtaining proper interpolation functions for avoiding this problem (Rhie and Chow, 1983; 

Schneider and Raw, 1987, among others), thus allowing the use of co-located arrangement of variables. 

 For geomechanical problems the coupling between pressure and displacement shows exactly the same behavior 

as pressure and velocity in fluid flows. If pressure and displacements are staggered (dal Pizzol and Maliska, 2012), the 
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pressure values will be calculated exactly where they are needed for computing the pressure gradient of the stress 

equilibrium equations. In the same way, the displacements are also calculated at the faces of the control volumes where 

mass balance is satisfied and the volumetric strain is required, thus providing a tight coupling between pressure and 

displacement. Following the analogy with the fluid mechanics, if a co-located arrangement of variables is employed, a 

careful treatment of the pressure-displacement coupling must be provide, otherwise the checker-board pressure problem 

observed for fluid mechanics may also appear in poromechanics. In fact, it is argued here that this is exactly what 

happens under undrained consolidation condition, where oscillatory pressure fields are observed.  

 From the above discussion, the solution proposed to avoid the oscillatory pressure field in poromechanics will 

be the same as the one applied for fluid mechanics, that is, improving the pressure-displacement coupling by properly 

interpolating the face displacements. In the following sections, two alternatives for interpolating the displacement at the 

control volume’s faces are presented. 

 
4.1. Unstabilized Formulation 

 

The simplest way of thinking about how to interpolate the face displacements is by applying Central 

Differencing Scheme (CDS). Considering the control volume of Figure 1, the CDS results an average of the nodal 

displacements, that is, 

 

E P

e

u u
u

2


  and W P

w

u u
u

2


                    (9) 

 

Substituting Equations 9 into Equation 7, the following expression is obtained, 

 
pp pp pp pu pu p

p P w W e E w W e EA p A p A p A u A u B                     (10) 

 

with the coefficients  PP

pA , PP

wA  and PP

eA  given by Equations 8, and, 

 

 pu pu

w e

α
A A

2 t
   


                    (11) 

 

Regarding that the CDS is also applied for o

wu  and o

eu , the independent term of Equation 10 is given by, 

 

  p o o o

p E W p

α ψ x
B q x u u p

2 t t


    

 
                  (12) 

  

 Equation 10 is, therefore, the discretized mass balance equation obtained by the FVM when CDS is employed 

to evaluate the face displacements. It is worth noticing that, in this case, an interpolation function of second-order 

accuracy (CDS) is employed for both pressure and displacement evaluations. From the mathematical theory already 

developed on this issue, as discussed by White and Borja (2008), it is well known that this pair of interpolation functions 

is prone to suffer from instabilities in the pressure solution. For this reason, Equation 10 is referred here by unstabilized 

formulation. 

 
4.2. Stabilized Formulation 

 

The Physical Influence Scheme proposes that an interpolation function for the face displacements can be 

obtained by performing a local discretization of the differential stress equilibrium equation (Equation 1) at the control 

volume’s faces. By employing Taylor series expansions of the derivatives of Equation 1 at the faces w  and e , one 

obtains, 

 

   
2
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2 2

ee

u 2u u p pd u dp
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Isolating 
wu  and 

eu  from Equations 13 and 14, 

 

  
 

 e E P E P

1 α x
u u u p p

2 2 λ 2G


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
                   (15) 

 

  
 

 w W P P W

1 α x
u u u p p

2 2 λ 2G


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
                   (16) 

 

 Equations 15 and 16 allow the face displacements to be represented as a function of the nodal displacements 

and pressures. It is important to stress that, since the PIS uses the differential stress equilibrium equation to obtain the 

interpolation function, it naturally takes all the physical effects into account, namely, the momentum diffusion and the 

pressure gradient. In order to understand how the inclusion of these physical effects is important, it is convenient to 

analyze two extreme situations. If the pressure gradient at face e , for example, equals to zero (
E Pp p ), it is natural to 

evaluate 
eu  by the average between 

Eu  and 
Pu , which is provided by both CDS and PIS. However, if the nodal 

displacements are zero (
E Pu u 0  ) but there is a strong pressure gradient acting on face e  (

E Pp p , for example), 

it is reasonable to expect 
eu  to be non-zero, which is not contemplated by the CDS. In this situation, the PIS would 

provide a more reliable value for 
eu , since it accounts for the pressure gradient effects. 

 Finally, by substituting Equations 15 and 16 into Equation 7, the following is obtained, 

  

      pp pp pp pp pp pp pu pu p p

p stab P w stab W e stab E w W w E stabA 2A p A A p A A p A u A u B B                                   (17) 

 

where pp

pA , pp

wA  and pp

eA  are given by Equations 8, pu

wA  and pu

wA  given by Equations 11, pB  given by Equation 12 

and the extra terms are given by, 

 

 
 

2
pp

stab

α x
A

2 t λ 2G




 
 and 

 
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2
p o o o

stab P W E

α x 1
B p p p

t λ 2G 2

  
      

.                           (18) 

 The application of PIS to the face displacements can be viewed as way to obtain stabilization terms to the 

discretized equations, aiming to avoid the pressure instabilities. For this reason, Equation 17, with stabilization 

coefficients of Equation 18, is referred hereafter as stabilized formulation. 

 

3.3. Resulting Linear Systems 

 

 In this work, the discretized mass balance and stress equilibrium equations are assembled in the same system of 

equations, thus treating the coupling between them in a fully implicit way (monolithic approach). By assembling 

Equations 4 and 10, the following block representation of the linear system is obtained, 

 

 
T P1

t

0


    

    
    

p B

u
                    (19) 

 

where the matrix  is composed by the coefficients 
pp

pA , pp

wA  and pp

eA , 
T1

t
 is composed by the coefficients pu

wA  

and pu

eA ,  is composed by the coefficients up

wA  and up

eA , and  by the coefficients 
uu

pA , uu

wA  and uu

eA . Defining n  

as the number of nodes (control volumes) of the grid, ,  and  have dimensions  n n ,  n n  and  n 1 , 

respectively. Both unknown vectors p  and u  have n  unknown pressures and n  unknown displacements, respectively. 

Moreover, P
B  is composed by the coefficients PB  of Equation 12. 

 On the other hand, by assembling Equations 4 and 17, the stabilized system of equations is obtained as, 

 

 
T P P1

stab stabt

0


     
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p B B

u
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with the matrix 
stab

 and the vector p

stabB  composed by the coefficients pp

stabA  and p

stabB , respectively. It is important to 

notice that the only difference between the unstabilized (Equation 19) and stabilized (Equation 20) formulations is the 

addition of the terms 
stab

 and the vector p

stabB . 

  

 

4. Numerical Experiments 
 

 In this chapter, a one-dimensional consolidation problem is solved. As depicted in Figure 2, the domain has its 

bottom boundary fixed and impermeable and the top boundary fully-permeable (
topP 0 kPa ) and subjected to a 

compressive load of 10 kPa. The structure is initially undeformed and the initial pore-pressure equals to zero.  

 

 
 

Figure 2. Geometry and boundary conditions for the one-dimensional consolidation problem. 

 

 The fluid phase properties is taken as those of water at 20ºC, that is, 3ρ 998.2 kg m , 3μ 1.002 10  Pa s    

and 4 1

sc 4.59 10  MPa   . The solid phase can be composed either by two different materials, as indicated in Figure 2, 

as well as only one material. The geomechanical properties of the materials considered in this work are summarized in 

Table 1 ,where K stands for the hydraulic conductivity. 

 

Table 1. Solid phase properties. 

 

 SAND CLAY 

K (m/s) 1x10
-4

 5x10
-9

 

G (MPa) 1.732 0.819 

λ (MPa) 2.597 1.227 

cs (MPa
-1

) 0.0 0.0 

φ 0.3 0.3 

α 1.0 1.0 

 

 

4.1. One Layer Consolidation Problem 

 

 In this case, both layers of the geometry depicted in Figure 2 are composed by SAND, with the geomechanical 

properties indicated in Table 1. This problem presents analytical solution for both pressure and displacement fields, 

which can be found in Verruijt (2013). Numerical solutions are obtained by both unstabilized (Equation 19) and 

stabilized (Equation 20) formulations, and the resulted pressure and displacement profiles are confronted with the 

analytical solution in Figure 3. A one-dimensional grid with 50 control volumes and a time step size of 1 second are 

employed. The results obtained by both formulations agree very well with analytical solution for all time instants 

considered. 
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                                   (a)                                                                               (b) 

 

Figure 3. Pressure (a) and displacement (b) profiles for the one-layer consolidation problem. 

 

 A convergence analysis is performed for the stabilized formulation by successively refining the grid and 

comparing the numerical and analytical solutions at t=1000s. The pressure convergence is analyzed by taking the infinite 

norm ( L
) of the error vector between the numerical and analytical profiles. The same procedure is applied for the 

displacement profile, but using the Euclidean norm (
2L ). The graphics (a) and (b) of Figure 4 reveal second order 

convergence for both pressure and displacement, regarding the time discretization error remains under control. In these 

graphics it can be also noticed that by reducing the time step size by one order of magnitude, the pressure and 

displacement errors are also reduced by one order, revealing first order accuracy in time discretization, as should be 

expected. 

 

  
                                      (a)                                                                               (b) 

Figure 4. (a) L
  norm of pressure and (b) 

2L  norm of displacement vs. grid refinement. 

 

 An undrained consolidation condition is obtained at the very beginning of the simulation. At t 0.1 s , for 

instance, a pressure profile with extremely sharp gradient near the top boundary is observed. In this situation, the 

numerical results obtained by both numerical formulations are compared with the analytical solution in Figure 5, where 

pronounced pressure oscillations are observed for the unstabilized FVM. For the stabilized formulation, on the other 

hand, the pressure oscillations are completely removed, despite introducing some false diffusion (also known as 

numerical diffusion) to the solution. 
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Figure 5. Pressure profile at t 0.1 s .  

 

 

4.2. Two-Layer Consolidation Problem 

 

 The case where the top and bottom layers of Figure 2 are constituted of sand and clay, respectively, also has 

analytical solution for the pressure field (Verruijt, 2013). The consolidation times for each material are very different, 

since the permeabilities of clay and sand differ by almost five orders of magnitude from each other. It means that the 

pressure profile will develop much faster along the sandy layer than along the clayey layer, which will originate a steep 

gradient near the interface between the two layers, as shown in Figure 6. For the numerical solutions presented in Figure 

6, a grid with 46 control volumes was employed with a time step size of 0.1 seconds. Again, pressure instabilities can be 

observed at the results obtained by the unstabilized formulation. A smoother pressure profile is obtained by the 

stabilized formulation, but some false diffusion can still be verified. 

 

 
 

Figure 6. Pressure profile at t=1000 s. 

 
 

4. Conclusion 
 

 A one-dimensional coupled poroelastic model has been numerically solved by the finite volume method. A 

stabilization technique has been proposed aiming to treat the pressure instabilities that arise when undrained 
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consolidation conditions take place. The stabilized formulation was obtained by applying the Physical Influence Scheme 

to evaluate the face displacements at the control volumes’ faces, which results a linear system very similar to the 

unstabilized formulation, except for the addition of extra terms into the mass conservation equations.  

 The results show that the pressure instabilities during undrained consolidation condition can be completely 

removed by the stabilization technique proposed here, despite using linear approximations for both pressure and 

displacements. Under this condition, the stabilization terms added to the linear system appear to introduce some 

numerical diffusion to the solution, resulting in smoother pressure gradients. Despite this fact, the stabilized formulation 

presented overall second-order accuracy in space. 

 Future developments aim to extending this methodology for three-dimensional unstructured grids and reducing 

the numerical diffusion introduced to the pressure field. 
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