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Abstract. Recently, in terms of investigation and in a minor scale for the solution of 
structural mechanics problems, Finite Volume (FV) techniques has been frequently 
considered [1]. Recently, finite volume methods has been tested in several structural 
problems, such as elasticity [3,5,6], thermo-elasticity [4], visco-plasticity [7], axi-
symmetric structures [8.12], incompressible materials [10.11], plates [9], orthotropy 
[13], welding process [15], fluid-structure interaction [14], extrusion and forging [16], 
among others. The results were always very  promising, since the method demonstrated 
to be robust and always following consistently the reference solutions available, 
considering both, the primitive variables (displacements) and recovered variables 
(stresses) [2,17]. Besides its inherent robustness due to its conservative approach, 
another strong factor that favors the advancement of the method has been its ability in 
dealing with complex geometries using meshes similar to the ones used by finite element 
methods (FEM). But, it seems that the most promising application is its use in coupled 
problems, like in fluid-structure interaction, in which the same grid can be used for both 
problems. This paper presents the development of an Element-based Finite Volume 
Method (EbFVM) applied for the solution of some structural problems aiming its 
validation, including an order of error analysis of Richardson [2], the solution of the 
Patch Tests [31] and an analysis of convergence by using iterative methods for solving 
the linear system. The results agree well with the available results in the literature and 



encourage further development of this method for solving structural problems 
especially in coupled problems. 

 
1 INTRODUCTION 

The development of numerical techniques for the solution of solid and fluid 
mechanics problems followed two independent routes for more than two decades. 
Probably the nature of the governing equations and the complexity of the domain dictate 
the choice of the method. Finite element techniques (FEM), due to its ability in dealing 
with arbitrary domains and its less complex mathematical models for elasticity 
problems, was the choice in the solid mechanics area. In the other hand, developers of 
finite volume methods (FVM) were dedicated to cope with the high nonlinearities and 
the coupling of the fluid flow equations, and practically none was done in this area until 
the 80’s to extend the methods to arbitrary geometries. In the last two decades finite 
element developers extended their techniques to solve problems in almost all areas, 
while the finite volume methods were extended to deal with arbitrary geometries and 
unstructured meshes, becoming extremely powerful and a largely used tool for fluid 
mechanics problems, the well known CFD area.  

Attempting to the extensions of the FEM and FVM methodologies to solve other 
class of problems, one realize that strong efforts were dedicated in the FEM area for 
adapting their techniques for solving fluid mechanics problems. The opposite is not 
true, and less effort was dedicated to apply the FVM technologies to solid mechanics 
problems. Based on the fact that FVM has abilities for solving the full momentum 
conservation equations, why are those techniques not extensively applied to solve solid 
mechanics problems? This is the scope of this paper, in which and Element-based Finite 
Volume Method (EbFVM) is extended to deal with elasticity problems. This method 
borrows from the finite element techniques all the geometric definitions and strategies, 
including the sweeping of the domain for the matrix assembling. The main difference 
among FVM and FEM is in obtaining the approximate equations. The former does the 
task through balances of the transported physical quantities over control volumes 
created based on the elements, while the former does not have the concept of volume 
conservation implied.       

Since engineering presses for more general techniques for solving coupled problems 
in several areas, one foresees that the EbFVM techniques can be successfully applied to 
those problems by using the same mesh and the same robust approximation offered by 
the finite volume procedures. Even when the coupled domains are solved sequentially, 
the transfer of information among domains easily transferred if the grids are of the same 
nature. The following statement, found in Slone et al. [14], explain the requirements 
when solving a coupled problem: 

 
“Unless the fluid-structure coupling is either one way, very weak or both, 

transferring and filtering data from one mesh and solution procedure to another may 
lead to significant problems in computational convergence. It becomes clear that when 
addressing dynamic fluid-structure interaction problems, for those with any significant 
degree of coupling, the solution procedures in the solid and fluid domains have to be 
compatible in respect of: 

•  The mesh structure and element order; 
•  The method of spatial discretization; 



•  The two-way exchange of information of the fluid-structure interface.” 
 

With this major motivation in mind, this paper describes a EbFVM technique 
successfully employed for CFD problems, for the solution of solid mechanics problems. 
The main goal is the presentation and evaluation the method using well-known test 
problems found in the literature.  

1.1 Developments - Historical View 

 This section tries to list in chronological order, the major developments made in 
extending FVM techniques to solid mechanics problems. In 1964 Wilkins apud 
Zienkiewicz [18] can be regarded as introducing the FVM in the structural field. After 
some dormant period, in 1991 Fryer et al. [3] returned to the topic with the work: A 
Control Volume Procedure for Solving the Elastic Stress-Strain Equations on an 
Unstructured Mesh. In 1992 Lahrmann [19] presented a work where the formulation for 
FV is discussed for complex geometries, and in 1994 Idelsohn and Oñate [20]  
published their Finite Volumes and Finite Elements: Two “Good Friends”, a paper with 
brought to the field an open view of the problem.  In 1994 Onãte, Cervera and 
Zienkiewicz [5] presented a formulation for structural mechanics also applicable to 
complex geometries. In 1995 Bailey and Cross [6] published an extension of the work 
of Fryer et al. [3] using finite volumes for solving problems of elasticity in 3D 
unstructured grids. In same year, Taylor, Bailey and Cross [7] applied FV for elasticity 
problems considering visco-plasticity. Following, in 1996, Whell [8] presented an 
approach for axi-symmetric structures and  Fainberg and Leister [4], applied FV and the 
multigrid technique in a thermo-elasticity problem for anisotropic materials. In 1997 
Bailey et al. [21] modeled the solidification of metals and Wheel [9] presented a 
formulation for plates. Again Wheel, in 1997 and 1998 [10,11] presented the modeling 
of incompressible materials using a mixed approach. In 1999 Taylor, Bailey and Cross 
[22] offered a formulation using an elastic-plastic model for small deformations.  
 In 2000 Fallah et al. [23] presented a comparison between FVM and FEM for 
nonlinear stress analysis problem. In same year Zarrabi and Basu [12], using a Cell-
centered Finite Volume Method (CC-FV) solved of elasticity problems for axi-
symmetric domains, and Demirdžić, Horman and Martinović [13] published the 
formulation in CC-FV to a orthotropic material. It considers that deformations happen 
not only due to the imposition of displacement and/or required force, but also due to the 
presence of temperature and moisture. In 2002, the range of applications increased with 
Yamamoto, Fang and Tsuchiya [24] realizing a comparison between the FDM, FEM 
and FVM for a one-dimensional problem, Slone et al. [14] solved a problem of fluid 
structure iteration, Taylor et al. [15] solved a welding problem using FV and Williams, 
Croft and Cross [16] simulated the processes of extrusion and forging of metals. In 2003 
Wheel and Wenke [25] presented a FV method which incorporated a degree of freedom 
for rotation and Slone, Bailey and Cross [26] a formulation applied to the dynamics of 
solids for small deformations including viscous damping. In 2004 Filippini [17] applied 
FVM to plane elasticity in isotropic material, comparing key situations with FEM, 
especially when spurious modes are presented in the solution using MEF. In 2007 Xia et 
al. [27] solved a elastic 3D problem using FVM implicit in time, Zhao et al. [28] 
employing an implicit formulation in time with unstructured meshes using FV for both 
solid and the fluid flow problem. Again in 2007, Limache and Idelsohn [29] emphasized 
that using FVM techniques is a very interesting route for solving solid mechanics 



problems, listing several factor for this choice. Finally, in 2009 Vaz Jr, Muñoz-Rojas 
and Filippini [2], presented an analysis of errors in the calculation of node stresses using 
the finite volume and finite element methods. 

These citations comprise much of the work in the area. An overall evaluation of the 
results reported has been very positive, motivating the use of finite volume techniques 
in these types of problems. Some of the characteristics of the method deserve to be 
highlighted: 

• The good convergence and stability of the numerical solution; 
• Ease of implementation in existing computational algorithms for fluid flow; 
• Facilitates the exchanging of information among the domains involved; 
• The strict conservation of physical quantities at the discrete control volume 

level means that one is respecting what the point-level partial differential 
equations requires. It must be always recalled that the partial differential 
equations represents a point-level balance of the physical quantities. The 
finite volume approximation equations are merely one of steps in the process 
of deriving any equation governing a physical phenomenon. 

2 EQUILIBRIUM EQUATIONS AND CONSTITUTIVE RELATIONS 
The equilibrium equations are obtained by applying the linear and angular 

momentum equations to a differential volume, obtaining 
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where σ is the stress tensor, b the body forces, u&&the acceleration and ρ the specific 
mass. The boundary conditions are defined so that n is the outward normal unit vector 
and and are prescribed displacements and loads, respectively. Quasi-static 
deformation is assumed in the present work (no inertia effects are accounted for). 

The constitutive relation for linear elastic solids is well known in the literature, in 
which, for sufficiently small deviations from a given reference state, the stress-strain 
relation is known as generalized Hooke´s law, 

( ) ( )[ ]IεσεεDσσ tr11   and   :0 νν −+=+=
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in which  σ0 is the initial stress tensor, D is the isothermal elastic modulus, εe the elastic 
strain tensor, E the Young modulus, ν the Poisson´s ratio and I denotes the second order 
identity tensor. Equations for plane stress and plane strain problems can be readily 
derived from Eq. (2), which, in terms of stress and strain components is, 
 
 
  

                                              (3) 

 
 
in which the constants of Eq. (3) are given in Tab. 1. 
 



 1D EPT EPD 3D  
D 1 2 3  

A E      

a 1 1   1  
b 0 ν ν ν  

C   
 

Table 1: Constants of Eq.(3)  
 
where εxx = ∂u/∂x,  εyy = ∂v/∂y and 2εxy = γxy= (∂u/∂y+∂v/∂x), are the strain 
components, and u and v are displacements along the x and y directions, respectively.  

3 FINITE VOLUME APPLIED TO PLAIN ELASTICITY 

The mathematical concept of the finite volume method is very simple and basically 
consists on the application of the equilibrium equations to discrete, non-overlapping 
controls volumes. The literature shows several different strategies to discretize the 
governing equations using finite volume techniques. They can be cast into two major 
categories: cell-vertex and cell-centered schemes. This work uses a cell-vertex scheme, 
named herein Element-based Finite Volume Method (EbFVM), employing unstructured 
grids comprising triangular or quadrilateral elements, or both. In the literature this 
method is often called Control Volume Finite Element Method (CVFEM). One avoids 
this denomination because it conveys to the reader the wrong idea that CVFEM is a 
Finite Element Method which uses the control volume. In fact, it is a Finite Volume 
Method which uses the element. 

3.1 The Element and the Control-Volume 

The element is the primary geometrical entity of the method and Fig.1 presents the 
construction of the finite volume method based on the elements, by joining the center of 
the elements to its mid-face around a specific node. In this construction the center of the 
control volume is a vertex of the element, therefore, it is a cell-vertex method.  

 

 
 

Figure 1: Construction of the control volume. 
 



 
Figure 2: 2D discretization with thickness T (a) and Vectors for one face of a control volume (b) 

 
 
Fig.2(a) shows a discretization where triangular and quadrilateral elements are 

present with a control volume created using parts of the five surrounding elements, and 
a Fig.(2b) shows the sweeping direction of the boundary, the constant thickness vector, 
(t = [0,0,T]T), the border vector ( L ) and the surface vector ( S ), where S = L x t. 

3.2 The  finite volume equilibrium equation 
The general discretization procedure is summarized as follows: Firstly, the linear 

equilibrium equation, Eq. (1), in its conservative form is integrated over the control 
volume, followed by application of the divergence theorem, resulting in 
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where dS is the differential vector of the volume surface (∂ΩV), ΩV is the control 
volume and dΩ its respective elemental volume. Substituting the 3D stress tensor and its 
corresponding vectors, one gets 
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where dS was substituted by its respective vector product. For the 2D analysis carried 
out in this work the resulting equation for a plane state of tension is 
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Representing dLx and dLy by dx and dy, one gets 
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Substituting the deformations and their relations, one gets 
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3.3 Parametric element. Coordinate transformation 

In order to generalize and facilitate the computational process of integration, that is, 
the coefficients calculation and assemble of the global matrix, it is convenient to 
parameterize the variables x and y or, in other words, to have a transformed element 
with parametric coordinates (local coordinates). In this study, only quadrilateral 
elements are used, although all the formulation holds for other type of elements. The 
parameterization is shown in Fig. 3, with the element in (x,y) global coordinate system, 
Fig.3(a),  and in Fig. 3(b) in the local coordinate system, (r,s). The shape functions and 
the mathematical relations derived from the transformation are given by  
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in which Ni and ϕi are values associated with the ith local node, ϕ can be any variable 
within the domain of the element, and J represents the Jacobian of the transformation. 

 
 

Figure 3: Element in global coordinates (a), and local coordinates (b). 
 



3.4 The discrete finite volume equations in local coordinates 
As can be seen in Fig 2(a), the control volume R, for example, is formed assembling 

parts of the elements, called sub-control volumes (SVC), sharing the same node. The 
integration along the boundary ∂LV is performed in the faces of each SVC, that is, two 
integration points exist for each SVC, one in each face, named f1 and f2 (see, for 
instance, Figs. 4(a) and 4(b). 

Although the discretization is performed using balances over a control volume, the 
computational code will sweep element-by-element assembling the equation for a 
specified control volume. All information are stored at the element. For example, in a 
2D case, for a quadrilateral element, 8 integration points will be known for each 
element. At those integration points fluxes will be calculated and stored. When 
assembling the global matrix, 2 of these fluxes of each element will be used for 
constructing the approximate equation for that control volume.  

These faces (f1 and f2) are generalized through the line fm shown in Fig. 4(c), 
considering the position of the Integration Point (IP), and the sweeping direction of the 
control volume border. Considering linear variation at the faces, the Gauss-Legendre 
integration with one integration point suffices to obtain the exact integral of the 
polynomial. The integrations points IP1 and IP2 are shown in Figs. 4(a) and 4(b) in the 
global and transformed coordinate system, respectively. 

 
 

Figure 4: Integrations points in the faces of a SVC, (a) and (b). Generic face fm=Bfm-Afm, unity vector 
efm=(αfm;βfm) and parametric variable q (c) 

 
Using the expressions given in Eq. (8), one obtains 
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Eq. (9) for a quadrilateral element has 8 equations and 8 unknowns values [una, vna, 

unb, vnb, unc, vnc, und, vnd]T which are the nodal displacements of the element. A, b and C 
appearing in Eq.(9) are defined in the Tab.1, and ua

m, ua
i, ua

j are the displacements of a 
node a in the direction defined by m, i and j, respectively. Na'm, Na'i, Na'j are the 
derivatives of the ath shape function in relation to the directions m, i or j, and, δij is the 



Kronecker Delta, εjnp is the alternating tensor, ep is the thickness vector, where p 
indicates one of the main directions, dxn indicates the differential length (dx and dy) and 

 are the body forces integrated over the SVC. To conclude the definitions, i and j are 
free indexes indicating rows and columns in the matrix. By its turn, l is an index, and 
will generate a new system for each value of l. This in fact indicates the node that is 
associated with the SVC and k indicates the element. The relations,  
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are used to obtain 
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Eq. (11) refers to a system for a SVC associated to a particular element, that is, has 
the relationship between the eight displacements [una, vna, unb, vnb, unc, vnc, und, vnd]T. 
However, starting with Eq. (11) for a jth SVC in some kth element, we can define a 
nodal matrix that relates the ith local node to a jth SVC. This matrix appears in the 
nodal equation, Eq.(12), represented as  where n indicates nodal matrix. The 
components of  are the respective multipliers in terms of ui and vi of Eq. (11). 
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3.5 Assembly of the equations system 
The final system equations has the following form  
 
 

gKu =*                                                           (13) 

 
in which u* is the solution vector, K is the stiffness matrix and g the forcing vector. To 
assemble K is necessary sweep the domain for each kth element locating the matrix as 



  present in Eq. (12) for each jth SVC and each ith element node, placing the 
components as  in their positions with the help of the matrix connectivity. This 
process is illustrated in Fig. 5. 
 

 
 

Figure 5: Assembly of the equations system from the nodal matrix,  
forcing vector and connectivity matrix. 

4 TEST CASES 

The main goal os this section is to apply the developed method to some well-known 
problems such that the computer implementation and basic behaviors of the method 
can be checked. There is no interest in solving complex solid mechanics problems at 
this moment, target to be done in a next paper.  

4.1 Richardson extrapolation  
Since it is impossible to reach zero size for the mesh, Richardson extrapolation [2] 

was conceived for extrapolating finite size mesh solutions to get the “exact” solution, 
φexact, at a given point, by 
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where φh is the discrete solution, eh is the approximation error, h is the mesh size, M is a 
constant and p is the local error order. A safe application of the Richardson 
extrapolation requires three assumptions (Oberkampf apud Vaz Jr [2]): (i) the exact 
solution must be smooth enough that the Taylor series expansion for the error is 
justified, (ii) the formal convergence order, p, is known, and (iii) the mesh size is 
sufficiently small such that the leading-order error term dominates the local 
approximation error, i.e., the convergence is monotonic in the asymptotic range. The 
exact order of the approximation error is not known a priori, which recommends the use 
of an estimate p* that can be determined by assuming asymptotic convergence and by 
applying Eq.(14) to three size nested Cartesian meshes, h1, h1, and h3, which, for a 
constant refinement ratio, r, yielding 
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where h3 > h2 > h1. Errors are evaluated only at coincident nodes for meshes (h1, h2 and 
h3) and are associated to the most refined mesh h1, therefore no global Richardson 
measure is computed. In this work Richardson extrapolation is used to illustrate the 
order of error for the displacement calculation. The calculation of the approximate order 
of the error (p*) is performed for a simple test case of the a cantilever beam depicted in 
Fig. 6 for a plane stress problem. In the same test case the monotonic convergence is 
verified. With the purpose to compare with the analytical solution [2] a slender beam 
(L/H=20) is employed. 

 

 
Figure 6: The Cantilever beam used to compute the order p*  

and to verify the monotonic convergence. 
   

To verify if the convergence is monotonic, it is used five meshes: 40×2, 80×4, 
160×8, 320×16 and 640×32 elements (Nx × Ny). Fig. 7 shows the neutral line near the 
free end where it can be seen that with the refinement of the mesh the approximate 
solution tends to the analytical values. Using these results Fig. 8 shows that the 
convergence is monotonic for a chosen point close to the free end of the neutral line 
(NL). 



 
 

Figure 7: Monotonic convergence for a point near the free end on the neutral line compared with the 
analytical solution proposed by Donnell. 

 
Order of the error (p*): The determination of the approximated order of the error is 

done using Eq.(15) with 640×32 meshes (for h1), 320×16 (for h2) and 160×8 (for h3). 
The order of the error was obtained for the total displacement d, with  
over the points for the smallest mesh, h3. The map is shown in Fig. 9. Furthermore the 
error of Richardson, eh, is also computed and shown in Fig. 10. 

 

 
Figure 8: Monotonic convergence for the v displacement of the point (x;y) = (0,1;0,0025) m. 

 

 
 

Figure 9: Map of the order of the error (p*). 
 



 
 

Figure 10: Colour map of the error (eh) along the beam 
 
Fig. 9 shows that the order of the error is very close to 2.0 over most of the beam, 

reaching lower values in regions close to the fixed end. Based on these results one can 
say that the method used is of is of order 2.0. The largest displacements were of the 
order of 1.5 mm and the greatest errors of the order of 1.44×10-3 mm, i.e. around 0.1%, 
indicating a very good approximation. Following, the patch tests are performed in order 
to check others characteristics of the method. 

4.2 Patch Test 

The main idea of the Patch Test is to test the discretization method, the 
computational implementation of the algorithm, the consistency condition and the 
singularity problem which appears in certain situations. The consistency condition [31] 
require that in the limit (as h tends to zero) the approximation of Eq.(13) should model 
exactly the differential equation, Eq. (1). This is of course, minimum requirements, and 
it is expected to be fulfilled by any numerical method.  Regardless the fact that the 
solution of Eq.(13) was achieved with an error of order p ≥ 2, the method should 
reproduce exactly the solution for any linear forms of u* as h tends to zero (where h 
represents the size of the element). For the patch tests A, B, C with single-element, the 
exact solution presented in Eq.(16) will be used,  and for the patch test C with slightly 
degenerated elements, the solution employed is given by Eq.(17). If linear 
displacements are imposed the resulting analytical stress field are given by   
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Figure 11: Patch of elements: (a) for patch test A and B, (b) for patch test C, (c)  Single-element and 
(d) patch test C, with “degenerated” elements. 



 
Patch Test A: In Test A, it is inserted the exact value of the parameters u* at the node 

a and it is checked if the identity, given by 

0* ≡− ijij guK                                                       (18) 

for i = a, according to Fig.11(a), is verified. 
 

Patch Test B: In Test B, only the values of u* corresponding to the boundaries of the 
'patch' are inserted and ua is found through  

ijij

jijiji
i K

uKg
u

δ
δ *

* )1( −−
=                                               (19) 

for i = a, according to Fig.11(a), and compared against the exact value, 
 

Patch Test C: In this test, the patch of elements is assembled as before, but subject to 
prescribed natural boundary conditions. In Eq.(13), fixing only the minimum number of 
parameters u* necessary to obtain a physically valid solution, e.g., eliminating the rigid 
body motion, a solution is sought for the remaining u* values and compared with the 
exact solution. 

Single-element Test: This test is an alternative of test C, however, considering a 
single element. This test is, indeed, a requirement  of any good numerical formulation, 
since a larger patch, possibly,  may not reveal the inherent instabilities of a single 
element. 

For comparison, Tab.(2) presents the nodal coordinates, nodal solution and nodal 
forces given by Eq.(16), referring to Figs.11(a), 11(b) and 11(c) and of Eq.(17) referring 
to Fig.11(d). 

 
 Eq.(16) Eq.(17) 

N x y u v gx gy x y u v gx gy 

1 0.0 0.0 0.0 0.0 -4.0 -4.0 0.0 0.0 0.0 0.0 -2.0 0.0 
2 2.0 0.0 0.0028 0.0104 1.0 1.0 2.0 0.0 0.004 0.0 2.0 0.0 
3 2.0 3.0 0.0028 0.0146 4.0 4.0 2.0 2.0 0.004 -0.0012 2.0 0.0 
4 0.0 2.0 0.0 0.0028 -1.0 -1.0 0.0 2.0 0.0 -0.0012 -2.0 0.0 

Figs.11(a) and 11(b)       
5 0.4 0.4 0.00056 0.00264 0.0 0.0 0.48 0.78 0.000959 -0.000467 0.0 0.0 
6 1.4 0.6 0.00196 0.00812 0.0 0.0 1.22 0.48 0.002442 -0.000288 0.0 0.0 
7 1.5 2.0 0.00210 0.0106 0.0 0.0 1.52 1.22 0.003041 0.000733 0.0 0.0 
8 0.3 1.6 0.00042 0.0038 0.0 0.0 0.78 1.52 0.001558 -0.000912 0.0 0.0 

 

Table 2: Nodal coordinates, solution and forces, Eq.(16), Fig.(11a, b, c) and Eq.(17), Fig.11(d). 
 
Test A: Using Fig. 11(a) and the solution given by Eq.(16), assign to the border nodes 

the analytical values of Tab.(2), getting a system of equations. Use Eq. (18) for nodes 5, 
6, 7 and 8 obtaining the residues gx and gy given in Tab.(3). It can be seen that the 



residues are of the order of the truncation errors, what indicates a good behavior of the 
method in this test.  

 
 Test A Test B Test C 
N gx gy u* v* u* error v* error 
2     0.00280 1.04E-17 0.0104 9.89E-17 
3     0.00280 3.99E-17 0.0146 9.71E-17 
4       0.0028 2.04E-17 
5 -1.75E-15 -3.33E-15 5.60E-04 2.64E-03 0.00056 0.0 0.00264 9.97E-18 
6 3.77E-15 -4.86E-14 1.96E-03 8.12E-03 0.00196 0.0 0.00812 3.99E-17 
7 -1.56E-14 1.05E-13 2.10E-03 1.06E-02 0.00210 1.95E-17 0.01060 9.71E-17 
8 -3.33E-15 0.00E+00 4.20E-04 3.80E-03 0.00042 3.04E-18 0.00380 1.99E-17 

 

Table 3: Test A – Residues gx and gy. Test B – Displacements u and v. Test C – Displacement u and v with 
respective errors. 

 
Test B: As in test A, using Fig.11(a) and the solution given by Eq.(16), it is assigned 

to the boundary nodes the analytical values of Tab.2. Eq. (19) is then applied to nodes 5, 
6, 7 and 8 resulting in the values for the displacements u* and v* given by Tab. 3. The 
values obtained coincide exactly with the analytical values of the Tab.2. This 
demonstrates that the method behaved correctly also in the calculation of the 
displacement.  

Test C: Now using Fig.11(b) and the solution given by Eq.(16), it is assigned to the 
boundary nodes analytical values of Tab.(2) to the for displacements and forces. Then 
Eq. (19)  is applied for nodes 2, 3, 5, 6, 7 and 8 for u and v displacements and v 
displacement only to node 4, obtaining the values for the displacements u* and v* given 
in Tab.(3) with their absolute errors. Again the errors obtained fall in the range of the 
truncation errors of the calculation. 

Single-element: Using Fig.11(c) and the solution given by Eq. (16), it is assigned to 
the boundary nodes the analytical values found in Tab.(2) for prescribed displacements 
and forces. Now using Eq. (19) for nodes 2 and 3 for u and v and to node 4 only for v 
displacement, the values for the displacements u* and v* are obtained. Again, the 
numbers coincide with the analytical ones. 

Test C with “degenerated” elements: Using Fig.11(d) and the solution given by 
Eq.(17), it is assigned to the boundary nodes the analytical values found in Tab.(2) for 
displacements and forces. Then Eq. (19) is applied for nodes 2, 3, 5, 6, 7 and 8 for u and 
v and to node 4 only for v displacement, obtaining the values for the displacements u* 
and v* that exactly match the analytical values of the tab.(2). 

4.3 Convergence behavior of the linear system 

Eq.(13), in many situations, needs solved by iterative methods.   No efforts were 
made in order to use more efficient solvers. In spite of that, in this section, an analysis 
of the convergence rate of the solution using Gauss-Seidel with and without Successive 
Over-Relaxation (SOR) is performed. The iterative process is stopped when the norm of 
the residue reaches certain level of tolerance, with the norm (║R║) calculated using 



Eq.(20). The initial values are zeros for all u*. The problem test used in this evaluation 
is presented in Fig. 12. In Fig.12 the geometry, boundary conditions and the map for the 
displacement u* are shown. 
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Figure 12: Geometry, boundaries conditions and displacement map. 
 

Fig. 13 shows the number of iterations as a function of the acceleration parameter, 
indicating that the value of 1.82 was the best coefficient for this problem. Recall that 
this coefficient depends on the grid used. 
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Figure 13: Relaxation coefficient ω for the problem illustrated in Fig.12. 

 
Finally, in order to verify the computational gains using SOR, Fig. 14 shows the 

number of iteration using Gauss-Seidel and S.O.R with the optimum relaxation 
coefficient. It can be seen the enormous reduction in the number iteration when the 
optimum parameter is used, from 450.000 to 75.000 iterations.For both methods the 
convergence is smooth and well behaved. 
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Figure 14: Convergence rate of the norm║R║. 
 
The convergence of the norm of the residue is smooth for both solution methods. 

Initially the SOR showed higher residue, but until this iteration 100 was lower than the 
residue obtained in the Gauss-Seidel. Finally the methods converge to the tolerance 
adopted (Tol = 1×10-4) with 490,000 iterations for Gauss-Seidel and 75,000 iterations 
for SOR method, that is, only 15% of that. 

5 CONCLUSIONS  

Following, some conclusions are drawn from the results obtained with the tests 
made for evaluating the EbFVM presented in this paper. 

5.1 Richardson extrapolation 

The application of Richardson error analysis is valid for situations in which the 
convergence of the solution according to the size of the mesh (h) is monotonic, and this 
was verified for the case considered, as shown in Fig. 8.  

The order of the error tends to be of close to 2 for most of the domain, as reported in 
Fig. 9. In a similar case (double-clamped cantilever beam) and using the classic finite 
volume method on a grid Cartesian, Vaz Jr [2] analyzed the order of the error for both 
the displacements and stresses, and also obtained close to 2.0. 

Errors in displacement are small throughout the beam, reaching maximum values of 
1.44×10-3 mm in the free edge and values of the order 10-4 mm in most of the domain, 
according to Fig. 10. The largest displacements is of the order of 1.5 mm and the largest 
errors 1.44×10-3 mm, i.e. error of the order of 0.1%. 

5.2 Patch tests  

The method has demonstrated good behavior in all proposed tests: Test A, Test B, 
Test C, Single-element test and Test C with “degenerated” elements. This permits to say 
that asymptotic convergence is ensured, the algorithm is robust, the solution continuity 
between elements is ensured and that the algorithm was correctly implemented. 
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5.3 Assembling technique 
The sweeping of the domain element-by-element, renders to developed method 

generality in dealing with any type of grid and the necessary tools for easy 
implementation in existing fluid flow and finite element codes.   

 

5.4 Concluding remarks 

The results obtained herein reinforce the statements already found in the literature 
that finite volume methods are suitable for solving solid mechanics problems. The 
method presented contains all the ingredients required for a general method, like 
unstructured grids with suitable computational abstraction for implementing element or 
edge based methods. Associated to these features, the conservative principle at discrete 
level confers to the method stability and robustness. Coupled problems seems to be the 
major application for the technology advanced in this work.  
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