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ABRSTRACT

The three=dimensional supersonic flow arcund complex configurations like a
Launch wehicle 1s determined using a shock-capturing technique embodied in a finice=-
difference approach in generallized coordinates. The equations are written in
conservat lon=law form and Integrated from an inicial data plane downstream over the

body. Existing shock waves are captured automatically. Results are compared with
experimental data to demonstrate the abllity of the model to accurately predicc the
inviscid flows arcund a space vehicle.

INTROBUCT LOM The Eq.(1), which  repreent Chie miaEs

conservation equation and three momentum equations,

In the design of a supersonic launch wvehicle comprise a complete set when coupled with the energy
there are many effects that are of utmost importance equatfon in the following form

to be determined. Among them are the aerodynamic

loads necessary for the prediction of the vehicle 2

trajectory. The ability of computing numerically the pe il -9% (3)
load distribution arcund launch vehicles 1s of

considerable importance, mainly because the high costs

of wind=tunnel tests, Careful and well chosen wind where
tunel experiments, In  conjunction with powerful [ —————r
numerical simulations are the less costly approach for q =Wu? + v¥ 4yl 14)

deslgning a space vehlcle. By lts turn, the numerical
solutien of the three=dimensional flow fleld equations

is not an easy task, with added complexity, when the Due to the lrregular shape of the solution domain
solution domain 18 frregular. it 18 not convenlent to use the conservation aguat fong

In the present work & three-dimensional numerical written in the Cartesian coordinace system, hecause of
model, wusing the second order non-centered finite- the boundary conditions application and code
difference scheme of MHacCormack {n boundary=fitted generality. A more general model can be obtained if
coordinate, 18 employed to solve the inviscid flow the congervation equations are tramsformed to a new
field equaticns cast in conservation-law form. The coordinate system, coincident with the calculat lon
shock-capturing technique is used which is capable of domain. The sultable ctransformation for rhe type of
numerically predict the location and incensity of all problem anallized here is

predominant shock waves without the explicit use of
any shock-fitting procedure.

t =z ; £ = Elzuy,2) 3 1 o= nlxuy.ed (%)
GOVERNING FLOW EQUATIONS Fig.| shows  two cross-plance and Ll
correspaiging transformed domains for the
The equations of motion can be written in transformution glven by Eq.(5). It ls seen that with
conseevatiun-law form, wuslng vector notation in the this transformaticn any calculation domain laid out
Cartesian coordinate system as [1] over blunt bodles, even axially non-sysmectric, can be
transformed onto a parallelepiped in the computational
plane.
iE 37 2 The conservation=-law form of the equations of
ke e [i] (1) motion, Eq.(l), can be retalned in the new cosrdinate
¥ system as
- 4aE
where E,F and T are four-dimensional vectors defined =T E{ + %% =0 (B
by
Lo 2 Py where the new variables are defined as follows
Ea |k +pu : Foa [P P
puw 4 kp + pvd ¥ = = - o
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v _
T oa (Puw E=E1; [/ J
pew
kp + pwd

The dintegration of Eq.{4%) is performed with
respect to 1, since the equation 18 hyperkolic with
respect  to  that coordinate. The flow variables

oo?



P: 0 » u, v and v are, therefore, determined from the
components of the conservative variable E.
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Fig. | - Cross-planes of the 3-D transformation

FINITE-DIFFERENCE TECHNIQUE AND SOLUTION PROCEDURE

Shock=-capturing 13 one of the most widely used
techniques for computing invisecid flow with shocks.
The capability of an SCT to accurately predict the
location and intensity of all shock waves, in addition
to the continuous determination of the flow fleld,
depend 1in part on the finite-difference scheme used.
The shock waves predicted by these methods are indeed
smeared over several mesh interval but the simplicity
of this approach may outweigh the slight compromise in
results compared to shock-fitting schemes.

The MacCormack second-order scheme [1],adopted im
this work is

(1) _ g0
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where
a = .2 wo= 0.4 AE = An = |

The solution procedure is shown schematically in

Fig. 2. Since the method employed here is valid only
for the supersonic region, the solution in the plane
AA' must be known. In the region I the flow 1is

subsonic/supersonic and some other methodology must be

employed in that region. The solution used in this
work was obtained in [B], using a time-dependent
methodology. The transfer of the information from
reglen 1 to plane AA" is donme through a grid
overlapping procedure. The solution marches
downstream from the =z to z4.; surface, taking
advantage of the hyperbolic nature of the equation

set, The compression and expansion shock-waves are

Laoor. d
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fully captured with this model. The size of the
marching step is variable and changes to meet the
etabilicty conditions, as discussed latter.

BOUNDARY CORDITIONS

In this work two boundary
are used.
and in

conditions procedures
The reflection is used in the body sublayer
the plane of symmerry fringe, and the Abbett

[3]) scheme for the surface tangency condition. The
pressure, density, and tangencial wvelocity at the
sublayer point are set equal to their respective
values at the first point above the body, while the
normal velocity is set equal to the negative of its
value.
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Fig. 2 - Schematic of the marching procedure
In applying the Abbett's scheme one first

predicts values of the flow variables (p, P , u, v, w)
at 1 = 1+ A1, using the Euler "predictor and then
correct these quantitles using simple compression or
expansion waves to invoke the surface tangency
condition exactly. The details for the present
problem can be found inm [3].

STABILITY ANALYVSIS

A finite-differemce approximation to a partial
differential equation may be consistent but the
solution will not necessarily converge to the solution
of the FDE. In numerical techniques it 1s wery
important to select a step size to guarantee the
stability bound, such that the computation is
performed with a minimum of computer time. The method
applied in this work is based on a leocally linear
analysls of the governing partial differential
equations, coupled with a won MNeumann stability
analysis [1].

When the linear approach analysis is
Eq.(6) the

applied ko
manipulation of the Jacoblan matrixes and
the computation of the eigenvalues are very
cumbersome. To perform such comsputations the
algebralc processor REDUCE is used and, to determine
the eigenvalues the Brown method is employed[4].

The amplification matrix theory, at least for
two=dimensional +. E space, requires that
AT AE 5 L/ (3E ) max
(9}
g = |3(6) |10cal max
Where 3£ 1s defined to be the local maximum

modulus of the eigenvalues of the Jacobian matrix to £
direction, in a given grid point of the field. A
similar condition is obtained in 1, n space.

Arfan 5 L/ (3n)gax (10)

&n = |3tn) |1ocal max



The step size is determined by a minimum Atv predicted
by the two relations 9 and 10. This planar analysis
has heen shown that the relations 9 and 10 can be
replaced by

41/8E = const/(3E)max

A1)
ttfan = const/{dn)gay

The minimum value of relation 11 must be chosen, and
const < | can be varied during the computation with a
usuwally assigned value of approximacely 0.9.

KUHERICAL RESULTS

The numerical model is tested solving the
supersonic flow over the BSCOUT wvehicle [or several
Mach mnumbers. The angle of atvack was taken equal to
zerc, for comparison purposes, so the solution is two-
dimensfonal due to the axial symmetry of the wehicle.
The problem was  kept three-dimensional with a
discretization with 22x4] points in the £ ., n plane
and, approximately, 600 marching steps in the
direction. Figs 3, & amd 5 reports the pressure
coeficcient for the SCOUT wehicle for several Mach
nusbers. There 1s some disagreement betwveen the
experimental [5] results and the numerical ones close
to the compression corner. Up til now cthere 1s no
explanation for such & behaviour.

The bow shock, which encompasses the supersonic
marching region, although not presented here, is also
well captured by this sethodology
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CONCLUSTONS

The calculatlons have shown that this procedure
is capable of capturing weak shocks in the presence of
strong ones, like the bow shock, with both shocks
being well defined. Despite the discrepancies between
che numerical and expérimental results in the
compresaion cormer, the method predicted well che load
distribution over the entire region analyzed.

This procedure can be applied to space wvehicles
of many shapes in supersonic regme. The strong wedges
must be avolded becsuse of the possibility of flow
separation and upstream {nfluence of pressure, causing
the =0 called departure saolutions. Smooth shapes
with small wedge angles yleld best results.
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