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SUMMARY
Any porous media flow is inherently complex to model due to the impossibility of giving the real flow
geometry to the simulation model. If heterogeneous media is involved, as is the case of naturally fractured
petroleum reservoirs, the difficulty increases even more, since large fractures can be seen as
discontinuities, having as background the porous matrix, in which many smaller sized fractures are
present. The porous matrix can be treated by a stochastic procedure and are, normally, large deposits of oil,
while the large fractures are better solved through a deterministic treatment. A network of connected large
fractures linked to the porous matrix may be the most important flow path for oil production. In the other
hand, depending on the physical properties, capillarity and permeability, the fractures and porous matrix
combination may lead to a undesirable secondary oil recovery, leaving considerable amount of oil in the
porous matrix. Therefore, the prediction of this combined flow (fractures +porous matrix) is of utmost
importance for the oil industry. There are several approaches to solve this combined flow, all of them
based, of course, on a idealized fracture configuration, which gets more and more realistic as the
characterization methods evolves, due to the specialization of well-logging, 4D seismic and other methods.
The final goal would be to solve the local flow for any single fracture, irrespective its size, nowadays an
impossible task due to the lack of characterization methods and computer capacity. However, as
computational power and characterization techniques evolve, methods able to solve the details of the flow
should be devised. This paper follows this route and presents a DFM (Discrete Fracture Method) in the
framework of an Element-based Finite Volume Method (EbFVM) using unstructured grids. The EbFVM is
per se a multi-point flux approximation, avoiding the usual two-point approach, which is conceptually
wrong, since the errors do not vanish as the grid is refined. The EbFVM also avoids the need of more
complex MPFA algorithms for having correct flux evaluation. Additionally, the EbFVM framework allows
the use of truly directional upwind and higher order schemes with no extra efforts.
The 2D oil-water flow using the DFM method with superposition for connecting the fractures and the
porous matrix is solved. The fractures are assumed to be 1D considering its real thickness. Several aspects
of the model are investigated, as the capillarity effects, especially in the situation in which imbibition of
the porous matrix occurs and the anisotropy of the coefficients of the linear system resulting from the
superposition of the equations. Since IMPES method is used, comments on the time step adaption is also
given.
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Introduction 
 
In the last decades, driven by the growing demand for oil, the study of naturally fractured reservoirs 
has received a lot of attention. Due to complex tectonic movements and sedimentation processes, 
natural fracture reservoirs have a great complexity in his characterization; there exist two different 
media for fluid flow transport: fractures and matrix. Fractures present distinct hydraulic conductivity 
and capillary effect from the matrix, and they can be characterized as discontinuities in the porous 
matrix.  
 
According to Kaul et al. (2004), the main issue in the analysis of discrete fracture reservoirs lies in the 
interaction between these two different media and the properties that affect the flow, especially 
capillarity and gravity, which makes the phenomenon difficult to quantify. 

 
In a naturally fractured reservoir, fractures or natural cracks are largely responsible for fluid transport 
through the reservoir, with high permeability and low capacity for fluid storage (the relationship 
between the volume of the fractures and total rock volume is around 1%). The rock-matrix or simply 
matrix has low permeability (0.01 to 1 mD), but presents high capacity for storing of fluids (Rosa et 
al., 2006), and therefore work as a fluid feeding for the fractures. However, for fractures to act as a 
main transport media, it is expected that they are connected to each other. Therefore, not only the 
discrete fractured connectivity, but also their distribution and properties need to be known in order to 
properly determine the fluid flow (Long and Witherspoon, 1985). This fact becomes even more 
pronounced in situations where multiphase flow occur, since each phase can have a different flow 
pattern. According to Monteagudo and Firoozabadi (2004) fractures can be the main media for some 
components and the matrix for the others.  

 
According to Li and Lee (2008), full knowledge of the reservoir fractures distribution is almost an 
impossible task, since the fracture system is quite irregular and often disconnected. Geologists use 
different information to synthesize the fracture distribution such as well production profiling, pressure 
well tests, images, and core samples of the reservoir. In general, data on fractures are provided 
statistically through distribution functions for the thickness, length, and orientation, among other 
characteristics. Although they apparently have a random behavior, it is common to find real field 
situations where fracture are oriented in a preferred direction, since fractures tend to occur in planes 
perpendicular to the lower direction of the rock stress.  

 
The main goal of the present work it to investigate the secondary recovery process by water injection 
in natural fractured reservoirs in conjunction with 2D-unstructured grids, and using the framework of 
the Element-based Finite-Volume Method (EbFVM) which, by its turn, facilitates the numerical 
integration of the fracture with the matrix.  
 
Simulation of naturally fractured reservoirs 
 
In order to analyze the secondary recovery process in natural fractured reservoirs several experimental 
studies have been conducted (Horie et al., 1990; Pooladi-Darvish and Firoozabadi, 2000; Hirasaki and 
Zhang, 2004). Although these studies provide important results, numerical simulation is still an 
important tool to better understand the fluid flow in naturally fractured reservoirs. In this scope, one 
possible representation that gives accurate results regardless the fracture network is called simple 
fracture porosity model. As presented by Phelps et al. (2000) and Dogru et al. (2001), in this model 
one has the explicit discretization of the discrete fractures into the grid of the reservoir. That is, the 
grid has elements for both discrete fractures and matrix. Due to the large discrepancy between the two 
media (discrete fracture and matrix), rock properties as porosity and permeability are discontinuous 
and present sharp variations. Although this formulation provides accurate results, it is computationally 
expensive since a large amount of elements are required to represent both media. In addition, local 
grid refinement are, in general, also required, which cause large variation in the size of the grid. 
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Figure 1 shows an example of grid used by this formulation. Other formulations used to model the 
fluid flow in natural fracture reservoirs are described in the next sections.  
 

 
Figure 1 – Grid example used in the simple fracture model 

 
Equivalent porous media model 

 
In this group are the methods that try to represent the natural fractured reservoir as a single continuous 
medium by changing the physical properties. One of the first works in this area was performed by 
Hsieh and Neumann (1985), which attempted to represent a system where the flow was only through 
the fractures by using a volumetric average of the absolute permeability of both media. This method, 
however, is not restricted to situations where the matrix is isolated. This homogenization of the 
properties is suitable for media with high degree of fracturing. In this methodology, special attention 
should be given to the representative elementary volume (REV), which is the minimum volume of 
rock that can be considered representative of the fractured medium. Naturally fractured reservoirs can 
present high REV values, which initially prevents the choice of homogenization. Neuman (1988) used 
a stochastic approach to turn the homogenization independent of REV value. Although this model can 
be easily used, it has an important drawback since physical properties of the medium are generalized, 
and thus important features of the discrete fractures are hidden.  
 
Van Lingen et al. (2001) proposed the use of pseudo relative permeability curves for grid blocks 
containing fractures in order to analyze the fractured and matrix media as one medium, and hence 
avoiding local gridding refinement or unstructured grids. This approach differs from the 
homogenization of the properties, since Van Lingen et al. (2001) proposed changes in porosity and 
absolute permeability, and also adopted pseudo relative curves for capillary pressure and relative 
permeability for the grid blocks that are crossed by fractures, in order to consider and represent both 
the fluid flow into the fractures and exchanges with the matrix. This adaptation greatly restricts the 
flexibility of this model. Such effect occurs because pseudo parameters, in particular, for the relative 
permeability curves can hardly be determined, since they depend on all factors controlling the 
exchanges between the matrix and fractures. The pseudo curves approach is indicated for situations 
where large amount of flow occurs in the matrix. 
 
Multiple domain models 
 
In this classification are the methods that represent matrix and discrete fractures separately, and a 
fluid transfer function is used to connect both media. In this category, the most used model in the 
petroleum industry is the dual porosity model, which was proposed by Barenblatt et al. (1960) for 
slightly compressible single-phase flows. For each medium, phase saturation and pressure were 
considered as unknowns. The mass exchange between both media was modeled through a transfer 
function for the pseudo static regime such the material balance between both media was satisfied. 
Using an analytical solution for radial, single-phase flow Warren and Root (1963) presented a 
practical model assuming that the grid blocks are uniform and homogeneous, isotropic, and 



 

 

 
ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery 

29 August – 1 September 2016, Amsterdam, Netherlands 

 
rectangular sugar cubes limited by the fracture planes, which is shown in Figure 2. Besides the 
simplifications just mentioned, the authors also made some adjustments in the flow equations of the 
problem. For instance, they assumed that the flow occurs only through the fracture network, and the 
matrix storages the fluid only, and hence feeding the flow from matrix to the fracture network through 
the transfer function. The methodology proposed by Warren and Root (1963) became well known in 
the petroleum literature as dual porosity model, and several improvements have been performed in the 
transfer function by several authors, which are described next in this section.  
 

 
Figure 2 – Description of dual porosity model 

 
Kazemi et al. (1976) generalized this model for a two-phase flow with gravitational and relative 
mobility effects. Thomas et al. (1983) developed a three-dimensional, three-phase model, where the 
pseudo relative permeability curves were included in the transfer function. For the aforementioned 
methods, there is no communication between the matrix grid blocks. This simplification is allowed for 
cases where there is not a significant flow in the matrix. The dual permeability model (or dual 
porosity-dual permeability) was developed to represent cases where this assumption is not possible. 
Blaskovich et al. (1983) and Hill and Thomas (1985) generalized the dual porosity model to establish 
connections between the matrix grid blocks and fractures, and therefore allowing mass exchange 
between them.  
 
The multiple domain models are ideal for highly fractured reservoirs composed of small and 
connected fractures. Although not restricted to this case only, this methodology has some severe 
limitations. First, the determination of the transfer function between fracture and matrix is a complex 
task, since it depend on several properties of the porous media. Furthermore, the uniformity of 
geometry and properties can hide important parameters of fracture network, such as thickness, length, 
connectivity, direction, and spacing, which as previously discussed, interfere effectively in the fluid 
flow. Concerning the geometric representation of fracture network, some research has been performed 
to ensure greater flexibility. In order to better described the transient fluid flow of the matrix domain, 
Naimi-Tajdar (2005) proposed a discretization of both horizontal and vertical matrix grid blocks. 
 
Discrete fracture model 
 
In order to better represent the fluid flow in the discrete fracture model, the properties of fractures 
such as connectivity, direction and thickness are considered. Some authors like Gong (2007), consider 
that the single porosity model is actually a discrete fracture model. However, in this work, what is 
considered in this classification it is a simplification of single porosity model. If we compare the 
multiple domain model, which simplifies the geometry to highlight the flow modeling, the discrete 
fracture model focus on the opposite direction; here the main concern is with the geometry of the 
fracture network, but, in general, using a simplified physical model (La Pointe et al., 1997). Figure 3 
shows how the discrete fractures are represented in this method. Based on different approaches, there 
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are two types of discrete fracture models: the unstructured discrete fracture model (USDFM) and the 
embedded discrete-fracture model (EDFM) (Moinfar et al., 2011 and Moinfar et al., 2012).  
 

 
 

Figure 3 - Representation of discrete fracture model 
 
The pioneering works using the USDFM for simulating single phase flow in two-dimensional 
geometries were performed by Noorishad and Mehran (1982) and Baca et al. (1984). To represent 
properly the fracture network, unstructured grids were used, and the fractures were aligned along the 
edges of the elements of the grid. Therefore, the fluid flow into the matrix is 2D, while the fluid flow 
into the discrete fracture is 1D. Karimi-Fard and Firoozabadi (2001) showed that this simplification 
did not affect the accuracy of the results when compared with the simple porosity model. 
 
In this methodology, the matrix and fractures are coupled using the superposition principle, i.e. each 
medium is discretized separately, and then the balance equations of each media are added in order to 
obtain the final equation denoting the material balance of both media. Kim and Deo (2000), Karimi-
Fard and Firoozabadi (2001), and Monteagudo and Firoozabadi (2004) expanded the original concept 
of USDFM by adding the effect of capillary pressure for the simulation of incompressible multiphase 
flows.  
 
Compared to the explicit representation of the fractures, the USDFM dramatically reduces the 
simulation time. It is a more realistic representation of the fracture network by considering the effect 
of each fracture on the fluid flow. Moreover, as it applies the principle of superposition, there is no 
need for calculating the transfer function to connect both media, once the equations of both media are 
summed up, the transfer functions of each media vanished when the equations are added together. The 
USDFM presents some drawbacks. First, if the number of discrete fractures increases, the number of 
elements of the grid increases in a non-linear way. In addition, this model usually generates a high 
level of anisotropy in the coefficients of the linear system of equations, which makes its solution 
difficult (Moinfar et al. 2011).  
 
The EDFM approach was originally proposed by Lee et al. (2001), and was later explored by Li and 
Lee (2008) and Moinfar et al. (2012). One advantage of EDFM approach when compared to the 
USDFM is the possibility to use structured grids and hence there is no need to perform local grid 
refinement, since in this approach there is no flow modelling around the fractures. In order to model 
the flow between the fractures and matrix, an analogy with the procedure for coupling wells to grid 
blocks is performed. The concept of the well index introduced by Peaceman (1978) is used to obtain 
similar equations for coupling the fractures to the matrix. The early works assumed vertical fractures. 
Moinfar et al. (2012) extended the method to model inclined fractures. Although EDFM is 
computationally cheaper than USDFM, the high computational cost of the EDFM still persist when 
the number of discrete fractures is increased. The discrete fracture model is particularly suitable for 
situations where the rock-matrix has very low intrinsic permeability, or the fracture network 
determines how the fluid flow occurs. 
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Mathematical modelling 
 
This section presents the conservation equations for the fluid flow problem, the model for relative 
permeability and capillarity and the discrete fracture approach. 
 
Two-phase fluid flow problem 
 
The governing equations for fluid flow in porous media are given by the mass, momentum, and 
energy equations. In a porous media, the momentum equation of each phase is usually replaced by the 
Darcy’s law. In this work, we will deal with isothermal, immiscible, incompressible two-phase flows 
in natural fractured reservoirs. These hypotheses are commonly associated with the secondary 
recovery in petroleum reservoir simulations. Since only isothermal flows will be considered, the 
problem described next in this section can be fully described by one elliptic equation for pressure, and 
a hyperbolic equation for saturation. Assuming immiscible fluid flow, the mass balance for phase α 
can be written as  
 

    
∂
∂t ραSαφ( ) =−∇. ραuα( )+qα , (1)

 
where ρα and Sα denote respectively, the mass density and saturation of phase α, φ denotes the 
porosity of the porous medium,   qα  denotes the volumetric rate per volume of rock plus void space, 

and αu  denotes the velocity vector of phase α, which is given by Darcy’s law for multiphase flow by  
 

.rk Kα
α α

αμ
=− ∇Φu ,

(2)

 
where K is the absolute permeability tensor of the medium, krα and μα  respectively denote the relative 
permeability and dynamic viscosity of phase α, and αΦ denotes the potential of phase α. This 
potential can be written as a function of phase pressure and a gravity term, as 
 

P g zα α αρΦ = + (3)

 
In Eq. (3), Pα is the pressure of phase α, z is depth, which is positive in the upward direction, and g is 
the gravitational acceleration. Since only two-dimensional simulation will be treated in this work, 
there is no variation in z-direction and therefore, one can rewrite Eq. (1) as, 
 

   
∂
∂

ραSαφ( ) =∇. ραλα K .∇Pα( )+qα ,
(4)

 
where αλ  denotes the ratio of relative permeability to the viscosity of phase α. Assuming 
incompressible fluid and porous medium, one can write Eq. (4) as  
 

( ). .S K P q
t
α

α α αφ λ∂ =∇ ∇ +
∂

,
(5)

 
where 
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qα =

qα

ρα

(6)

 
Being pressure and saturation of each phase as unknowns of the problem, there are two equations 
(mass conservation equation for each phase, Eq. (5)) and four unknowns (Po, Pw, So, Sw). The two 
closure equations come from the volumetric restriction that can be written as 
 

1o wS S+ = , (7)
 
and from the experimental data through the definition of capillary pressure (Pc), 
 

o w cP P P− = . (8)

 
Although there are four unknowns, in practice only two equations are discretized: Eq. (5) is used to 
obtain Sw. To evaluate Pw, the mass conservation is written for the oil and water phase, and summed 
up. Such procedure results, after some algebraic manipulations, in the following equation 
 

( ) ( ). . . .t w o c tK P K P qλ λ−∇ ∇ − ∇ ∇ = , (9)

 
where the total mobility (λt = λo + λw) and qt = qo + qw. Po and So are obtained from the closure 
equations. 
 
Models for the relative permeability and capillary pressure 

 
For the two-phase flow (oil-water) of this work one assumes the water phase is the wetting phase. 
While the absolute permeability is an intrinsic property of the rock, the relative permeability depends 
on the interactions between fluid and media, and it is usually calculated as a function of saturation. 
There are several models to describe the behavior of the relative permeability curves. The Corey 
model (Corey, 1954) is used in this work. The expression for the relative permeabilities of water and 
oil are given by 
 

1

wn

w wi
rw rwor

wi or

S Sk k
S S

⎛ ⎞−= ⎜ ⎟− −⎝ ⎠
,

(10)

 

1
1
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w or
ro rowi

wi or

S Sk k
S S

⎛ ⎞− −= ⎜ ⎟− −⎝ ⎠
,

(11)

 
where Swi and Sor denotes the irreducible water saturation and residual oil saturation, respectively, krwor 
is the water relative permeability at the point where the oil saturation is equal to Sor, krowi is the oil 
relative permeability at the point where the water saturation is equal to Swi, nw and no are the Corey’s 
exponents for the water and oil phases, respectively. Figure 4 shows the curves used for water and oil, 
with all the parameters presented in Eqs. (10) and (11). 
 
For capillary pressure, it is adopted the same model used by Monteagudo and Firoozabadi (2004), 
given by 
 

( ) lnc w wP S B S=− , (12)
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where B is a constant. The capillary pressure decreases as water saturation increases; it vanishes if the 
water saturation is equal to unit and tends to infinity if water saturation approaches zero. In order to 
prevent an infinite value, one sets a maximum value for the capillary pressure obtained when Sw = 
0.001. 
 
 

 
Figure 4 - Relative permeability curves for the Corey’s model 

 
Discrete fracture model 
 
In this work, we employs the USDFM methodology initially presented by Monteagudo and 
Firoozabadi (2004). As previously mentioned, the final equations are obtained using the superposition 
principle. According to this, the fractured domain can be decomposed as  
 

m fεΩ=Ω + Ω , (13)

 
where mΩ and fε Ω  denote the matrix and fracture sub-domains, respectively, and ε is the fracture 
aperture. For each media, considering the different dimensions, the following set of equations for the 
matrix (m) and fracture (f) are obtained: 
 
Pressure equation for the wetting phase for the rock-matrix: 
 

  
−∇⋅ λt

mKm∇Pw
m( )−∇⋅ λo

mKm∇Pc
m( ) = qt

m . (14)

 
Saturation equation for the wetting phase for the rock-matrix:     
  

( )φ λ∂
∂

−∇⋅ ∇ =m m m m mw
w w

m

w

S
P

t
q .

(15)

 
Pressure equation for the wetting phase for the fracture: 
 

K Kλ λ∂ ∂∂ ∂
∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
− − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∂
f f f f fw
t o

f f
c

t

P P
w w w

q
w

.
(16)

 
Saturation euation for the wetting phase for the fracture: 
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Kφ λ∂ ∂∂ ⎛ ⎞
− =⎜ ⎟

⎝ ⎠∂ ∂ ∂
f f f fw w

f

w w

fP
t
S

q
w w

.
(17)

 
For the fracture equations, the ω letter indicates the discrete fracture orientation. From Eqs. (14) 
through (17), it is possible to observe that saturation and pressure from both media (matrix and 
fracture) can present different values. This assumption distinguishes the work of Monteagudo and 
Firoozabadi (2004) from the other works associated with the USDFM method mentioned above. In 
order to this hypothesis be valid is necessary to couple the unknowns of both media. Here we assume 
that the potentials of each phase at the discrete-matrix interface are equal. Such definition imply that 
that capillary are also equal, 
 

 
Pc

m Sw
m( ) = Pc

f Sw
f( ) .            (18) 

With this consideration, one can relate the saturations in fracture and matrix as shown in Figure 5. 
Attention should be given to fact that the relative permeabilities of fracture and matrix at the interface 
between the two media may be different due to the parameters of each model, and also to the 
discontinuity of saturation at the interface of both medium.  

 
Figure 5 - Capillary pressure and relationship between the saturations at the  

matrix-fracture interface 
 
Applying the chain rule to the accumulation term of Eq. (17), one obtains 
 

 

∂Sw
f

∂t
=

dSw
f

dSw
m

∂Sw
m

∂t
.            (19) 

 
Using Eq. (19), the final form of the fracture equations can be written in terms of the unknowns of the 
matrix, as 
 
Pressure equation for the wetting phase for the fracture: 
 

K Kλ λ∂ ∂∂ ∂
∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
− − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∂
f f f f fw
t o

m m
c

t

P P
w w w

q
w

 .        (20) 

 
Saturation equation for the wetting phase for the fracture: 
 

( ) 1
 Kφ λ

− ∂ ∂∂ ⎛ ⎞
− =⎜

⎝ ⎠∂ ∂ ⎟∂

m

f
B mm

f m f f fw wB
w w wf

mP
t w w
SB

S q
B

.        (21) 
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Further details about the model can be found in Monteagudo and Firoozabadi (2004). 
 
Numerical Modelling 
 
The Element-based Finite Volume Method- EbFVM 
 
The EbFVM - Element-based Finite Volume Method is employed in this work for obtaining the 
approximate equations. Several methods akin to EbFVM have been recently used for treating 
fractured reservoirs (Matthai et al., 2007; Monteagudo and Firoozbadi, 2004; Benedetto et al., 2015; 
Haegland et al., 2009), among others. The EbFVM, was introduced in the 80’s (Baliga and Patankar, 
1980) named CVFEM - Control Volume Finite Element Method, a denomination which, in some 
extent, conveys the reader to see the method as a Finite Element Method (FE). It is in fact a pure 
Finite Volume Method (FV) with no relations with traditional FE techniques. It only borrows from FE 
the concept of elements (not existing in FV methodologies prior to the use of unstructured grids). 
Triangles and squares in 2D, and tetrahedrons, hexahedrons, prims, and pyramids in 3D are elements 
that can be used in a FE or FV methodologies.  
 
In a FV approach if the element coming from the grid generator is used as control volume, the method 
is called a cell-center method, while if the control volume is created using parts of the element sharing 
the same node, it is called a cell-vertex method. The EbFVM belongs to the later category and is, 
inherently, a multi-point flux approximation due to the construction of the corresponding control 
volume. There is no need of creating interaction regions as done in the several types of MPFA 
methods for including the neighboring points in the flux calculation. And being a multi-point flux 
approximation, it avoids the use of only two-point for the flux calculation normally used for cell-
center methods in petroleum reservoir simulation. The two-point flux approximation carries 
truncation error not eliminated with the grid refinement.   
 
The crucial problem of having oscillatory pressure fields when all variables are located at the same 
point is solved in the EbFVM by using schemes as proposed by Rhie and Chow (1983), Raw (1986), 
Schneider and Raw (1986). In FE methodologies this pathology is solved using mixed-finite element 
methods, discontinuous Galerkin, and other approaches.  
 
Figure 6 depicts the elements and the control volume constructed using the sub-control volumes (part 
of the elements) sharing the same node. Unknowns are located at the nodes, characterizing a cell-
vertex method. Fluxes and all properties inside the element are calculated using the element nodes. 
The construction of the approximate equations is done sweeping the domain in an element-by-element 
basis using the pair of required fluxes calculated inside the elements. Interpolation inside the element 
of variables that obey elliptic behavior is done through the shape functions. When fluid flow is 
present, special interpolation functions are required, especially if flow-oriented algorithms are 
devised. These type of algorithms can be easily implemented in the framework of the EbFVM 
(Hurtado el al. 2007). All geometric parameters, as areas and volumes are also calculated using the 
shape functions considering a parametric element and its corresponding transformation from global do 
local coordinates.  
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Figure 6 – (a) Control volume showing the contribution of all sub control-volumes surrounding the 
node, and (b) a quadrangular element showing one of the sub control-volumes. 

 
Following the superposition principle, the equation to be discretized involves the matrix and the 
fracture equations, and is given by 
 
f

Ω∫ dΩ = f m
Ωm
∫ dΩm + ε f f

Ωf
∫ dΩ f (22)

 
Discretization of the conservation equations for the rock-matrix 
 
This work employs the IMPES method, therefore, there is just a linear system to be solved for 
pressure, while the saturation equation is solved explicitly. The approximation equations for pressure 
and saturation are both obtained by the EbFVM. This is opposed to many methods available in the 
literature in which the pressure equation is solved using a finite element method and the flow equation 
(especially when dealing with multiphase flows) using a finite volume method. It helps to have the 
same method to solve the equations with different mathematical behavior, like elliptic and hyperbolic. 
One starts discretizing the saturation equation, integrating it over the control volume and over time, as  
 

   
φm

V∫t∫
∂Sw

m

∂t
dVdt − ∇

V∫t∫ ⋅ λw
mKm∇Pw

m( )dVdt = qw
m

V∫t∫ dVdt .      (23) 

 
In this procedure geological information is stored at the elements and not in the control volume, as 
usual for cell-center methods. Porosity, for example is constant inside an element, therefore, it is 
variable inside the control volume, formed by parts of elements, and the average porosity is given by 

   
φp

m ≈ 1
ΔVp

Δ
s∈Sp

∑ Vsφs
m ,            (24) 

 
in which  φs

m  is the matrix porosity of the j-th element. The right-hand side of Eq. (24) is given by 
 

  
qw

m

V∫t∫ dVdt ≈ Δtq w,p
m,θ ,                      (25)

            
in which 
 

  
q w,p

m,θ= qw,p
m,θΔVp .           (26) 



 

 

 
ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery 

29 August – 1 September 2016, Amsterdam, Netherlands 

 
 
In the above equation the superscript θ  means the point in time (inside the time interval) in which the 
quantity is evaluated. Since one is using the IMPES method, the quantities are evaluated at the 
previous time level (θ =0). Using the divergence theorem for the second term in the LHS side of 
Equation (23), one gets 
 

    
∇

V∫t∫ ⋅ λw
mKm∇Pw

m( )dVdt = λw
m

S∫t∫ Km∇Pw
m ⋅dSdt ,        (27) 

 
with the RHS of the above equation  discretized by 
 

     
λw

m

S∫t∫ Km∇Pw
m ⋅dSdt ≈ Δt λw

m,θKm∇Pw
m,θ( )

ff∈Fp
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which can be written in an equivalent form taking in account the contribution of each element 
involved in the conservation equation, as 
 

     
λw

m,θKm∇Pw
m,θ( )

ff∈Fp

∑ ⋅ΔSf = λw
m,θKm∇Pw
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f
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e

∑
e∈Ep
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In Eq. (29), the superscript θ  is equal to zero for the water mobility and 1 for the pressure gradient. 
Therefore, the RHS of Eq. (29) is the final discretization of the second term in the LHS of Equation 
(23), the conservation equation under discretization. Since pressure is a variable with elliptic 
influence in the flow, the components of the pressure gradient can be written using the shape 
functions, as 
 

   

∂P
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ξ ,η( ) =
i=1
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∑ ∂Ni
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Pi            (30) 

 

   

∂P
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Nv

∑ ∂Ni
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Pi .           (31) 

 
A coordinate transformation is needed, since the shape functions are function of the local coordinates. 
A key issue when solving fluid flow problems is the interpolation function for the transported 
variables like saturation in the case under consideration. The simplest approach is to use an upwind 
scheme, since it render to the method stability, but with the adverse effect of introducing numerical 
diffusion. For unstructured grids it is not enough to control the signal of the velocity component, 
instead, the sign of the pressure gradient should be used for the upwind direction (Cordazzo et al., 
2005). Considering Figure 7, the following upwind interpolation scheme is applied: 
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Figure 7 – Upwind interpolation scheme 
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Having the interpolation function defined, the discretization equation reads, 
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The pressure equation is discretized using the same approach just applied for the saturation equation. 
The final discretized equation for pressure is given by 
 

( ), , , ,
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P P qS        (34) 

 
Discretization of the conservation equations for the fracture 
 
The discretization of the equations for the fractures is simpler than for the matrix, since the flow in the 
fracture is 1D; this flux can be defined by the nodes of the grid that are aligned with the fracture. 
Therefore, the pressure gradient is calculated using these two nodes, and for the computational code 
fractures are seen as boundary conditions. Figure 8 shows a control volume for pressure (or 
saturation) containing a fracture. The conservation balance is done for each part of the fracture 
separately. For the edge defined by the points p and  j , the mass balance (saturation) given by Eq. 
(21), reads, 
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The first term is approximated by 
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while the source term by 
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in which,  
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The second term of Equation (35) is approximated by 
 

,
,K dVdt Kλ ε λ

ω ω ω
⎛ ⎞ ≈ Δ⎜ ⎟⎝

∂
⎠

∂ ∂
∂ ∂ ∂∫ ∫ f f m f o f m

w w w up wt V
P t P ,          (39) 
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The phase mobility at Eq. (39) is evaluated through an upwind scheme by 
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The final discretized equation can be written as, 
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The same steps are applied for the discretization of the pressure equation for the wetting phase in the 
fracture. Although the details are not shown herein, the final form is, 
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Using the discretized equations for the rock-matrix and for the fracture, the superposition equation 
can be applied, resulting in, 
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Recall that the discretization of the fracture equation already carries the thickness of the fracture, and 
there is no need for its multiplication in Eq. (26). The pressure is obtained through the following 
relation 
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In both, Eqs. (44) and (46), the terms related to the rock matrix remain the same. For the fractures, a 
sweeping over all parts of the fracture is performed, that is, 

 
Nf  indicates the set of edges which 

represents paths of fractures, and  jp  is the line formed by nodes j and p , with the later being 
coincident with the control-volume node. 
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The IMPES method is used in this work, and, therefore, care should be exercised in choosing the time 
step for advancing the solution. The strategy is to use an adaptive time step according to the variation 
of the saturation during the time level. If the variation of saturation is greater than a specified value 

  ΔSmax for at least one node, the results are discarded and the time-step is reduced by a factor β  and 
the simulation returns to the beginning of that time level. If the variation in all nodes is smaller than 

  ΔSmin , the results are accepted and the time step is multiplied by the same factorβ . Following, 
results demonstrating the applicability of the method for several case studies are presented. 
 
Results 
 
Validation  
 
The main goal of this work is to advance a numerical scheme using EbFVM to deal with discrete 
fractures in conjunction with the superposition principle. Therefore, it does not addresses the 
complexity of modelling real fractured reservoirs, but deals with details of the numerical technology 
employed. Mostly of the results for natural fractured reservoirs available in the literature are presented 
in terms of saturation fields, which gives only quantitative behaviour of the problem. Checking the oil 
production permits to evaluate the performance of the method, and how well the connections between 
the rock-matrix and fractures are numerically handled. In this paper, the numerical works of 
Monteagudo and Firoozabadi (2004) and Marcondes et al. (2010) are employed for validation 
purposes. 
 
Test Case 1 - Single fracture in a quarter of five-spot configuration 
 
The validation tests start with a single fracture located in a quarter-of-five spot configuration with an 
injector well in the left-bottom corner and a production well at the right-upper-right corner, as shown 
in Figure 9. The thickness of the fracture is 10-4 m and the fluid and rock properties are given in 
Tables 1 and 2. 
 
 
Table 1 – Fluid properties 
 
  
 Wetting phase Non-wetting phase 
Viscosity, Pa.s 0.8x10-3 0.45x10-3 

 
 
 
 
 
 
Table 2 – Porous media properties 
 
 Matrix Fracture 
Porosity 0.2 1.0 
Permeability , m2 9.87x10-16 8.26x10-10 
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Figure 9 - Single fracture Geometry Figure 10 - Nodes chosen for the analysis of the anisotropy 
of the coefficients of the linear system 

 
 
Table 3 – Relative permeability constants - Monteagudo and Firoozabadi (2004)
 
 Matrix (m) Fracture (f) 
 water oil water oil 
Maximum value 1.0 1.0 1.0 1.0 
Residual saturation 0.0 0.0 0.0 0.0 
Corey exponent 5.0 5.0 3.0 3.0 

 
The volumetric flow rate of the injector well is 2,31x10-8 m3/s. The two works cited above proposed 
different parameters for the relative permeability curves and for the initial water saturation. Therefore, 
the comparisons are made separately. In the work of Monteagudo and Firoozabadi (2004) the, initial 
water saturation is equal to zero and the relative permeability constants are given in Table 3. The 
following parameters to control the variable time-step were used: β =1.2,   ΔSmax =0.01 and   ΔSmin = 
0.0005.   
 
As previously discussed, a fixed time step did not provide convergence in this case, for two reasons. 
Firstly, the explicitness of the IMPES method requires small time steps. Secondly, when the injected 
fluid reaches the discrete fracture large anisotropy in the coefficients of the linear system arises due to 
the large difference of the fracture and matrix absolute permeability. This can be a disadvantage of the 
discrete fracture method, since the model “feels” the details of the flow in the fracture and matrix 
regions and creates such anisotropy of the coefficients, since the properties of the rock-matrix and that 
of the fracture are considerably different. To understand a bit more about the anisotropy of the 
coefficients, Figure 10 shows a region in which three nodes are depicted, two at the fracture and one 
in the rock-matrix. For each of these nodes there is, of course, a control volume associated. Table 4 
shows, for those nodes, the coefficients of the principal diagonal after 10 days of simulation, time 
enough for the wetting phase reach the fracture. It can be seen that the order of magnitude of the 
coefficient is 104 times smaller for the node 3, node outside of the fracture. The changing in the 
capillary pressure did not alter this result. Of course, when there is no fracture all coefficients are of 
the same order of magnitude.  
 
Table 4 – Main diagonal coefficient for control-volumes 1, 2, and 3 at 10 days. 
 

Node without fracture Bm=Bf= 0 atm Bm=Bf= 1 atm 
1 7.12x10-13 1.15x10-9 1.32x10-9 
2 5.94x10-13 2.19x10-9 2.66x10-9 
3 6.38x10-13 5.99x10-13 4.15x10-13 
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Figure 11 shows the three triangular grids employed to perform the grid refinement study. The results 
obtained using these grids without capillary pressure are depicted in Figure 12, demonstrating that the 
finer grid used in all calculations (Fig. 11c) is fine enough for the purposes of this work. 
 
 

 
Figure 11 - Grids employed for the grid refinement study 

 
For this validation two values of capillary pressure parameters for the fracture (Bf) and one for the 
matrix (Bm) were used,   B

m = 1atm . The obtained results are shown in Figure 12b. 
 
 

 
(a) 

 
(b) 

Figure 12 – (a) Grid refinement study,  (b) and numerical results compared with the results of 
Monteagudo and Firoozabadi (2004).  

 
The results obtained in this work show a little higher oil production than the ones obtained by 
Monteagudo and Firoozabadi (2004), for both capillarity pressure values. The breakthrough (time for 
the injected flow to reach the production well) differs in about 2 days, representing 4% difference. 
Figure 13 compares the results without capillary pressure effect with the results of Marcondes et al. 
(2010). If one compares the results of Figures 12 and 13, one can see that the results are very similar.  
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Figure 13 – Comparison of the oil recovery with the one obtained by Marcondes et al. (2010) 
 
Figure 14 presents the saturation fields at 50 days after production for different values of capillary 
pressure. The results are similar to the ones presented by several other works and, clearly, 
demonstrated that the presence of the fracture accelerates the breakthrough, and the capillary pressure 
retards this event. Obviously, the later conclusion is dependent on the capillarity pressure data of the 
rock-matrix and fracture media. Therefore, an analysis can be done in terms of the relation   B

m / Bf . 
For values of this ratio greater than 1.0, the water passage through the fractures are limited, therefore, 
increase the life span of the reservoir. From Figure 14, it can be seen that there is a degree of 
imbibition of the wetting phase, coming from the fracture. 
 
 

 
   Figure 14 - Saturation of the wetting phase at 50 days for different values of capillarity pressure 

 
Test Case 2 – Geometry with 6 fractures 
 
The second test case was also presented by Marcondes et al. (2010), but now with 6 discrete fractures 
considered, as depicted in Figure 15. In this case only qualitative comparisons are made through the 
saturation fields.  Figures 16 and 17 show the saturation fields at 25 days of production for different 
values of capillarity pressure, and without capillary pressure for three production times, respectively. 
For the case with no capillary pressure the iso-saturation lines are very similar to the work of 
Marcondes et al. (2010), as seen in Figure 17, but the oil recovered with the model of this paper is 
slightly higher since the breakthrough occurs early. This difference increases when the values of 
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  B

m / Bf increases, and at the end of 100 days, the oil recovered is about 5% higher, as depicted in 
Figure 18. 
 
 

 
       Figure 15 - Region with multiples fractures 

 
 
 
When the discrete fracture model is used, it means that one is interested in representing with fidelity 
the network of fractures. There is a price to pay for having the details of the fracture flow. Figure 19 
shows a situation where the fractures intercept themselves. In this situation, not only the nodes need to 
be given to the algorithm, but also the connectivity among them, otherwise it could be considered that 
the path joining nodes 2 and 3 is part of a fracture. For a large field with many fractures, this may be 
computational expensive. 
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Figure 16 - Comparison of the saturation fields 
with the work of Marcondes et al (2010) after 25 
days of simulation.  
a) Bm = Bf = 0 atm ,  

b) Bm = Bf = 1 atm and 

c)  B
m = 1 atm and Bf = 0.2 atm  

Figure 17 - Comparison with the work of 
Marcondes et al (2010) for   B

m = Bf = 0 atm  
 
a) 12 days 
b) 25 days 
c) 40 days 

 

Figure 18 – Oil recovered – Multiple fractures
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Figure 19 – Nodes involved in a fracture intersection 

 
Influences of the fracture properties on the flow  
 
The final part of this paper is dedicated to present some influences of the properties of the fractures on 
the flow. The discrete fracture model offers this possibility, since the details of the fractures network 
enters the model. The following tests uses the data employed for the case study 1, with a single 
fracture and without capillary pressure effect. The grid employed is the one shown in Figure 11 (b). 
Figure 20 shows the penetration of the injected fluid at 5, 10, 25, and 35 days. It can be seen that for 
35 days the wetting fluid reaches the production well. If no fracture were present this time would be 
68 days. The presence of the fracture, therefore, advances the breakthrough by almost half of the time. 
 
 

Figure 20 - Influence of the discrete fracture on 
the flow 

 
Starting with the data from Table 2, the permeability was decreased, and as well as increased, by 10 
and 100 times. As shown in Fig. 21, for the two cases in which the permeability of the fracture 
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decreases, the arrival of the water at the producing well is retarded, since the fracture no longer offers 
an easy path for the flow. For the two cases in which the permeability increases, it was not noticed 
appreciable difference. It is speculated that the oil recovery remain almost the same because the 
matrix coefficients corresponding to the fracture are already larger than the rock matrix coefficients, 
and further increase in the permeability does not alter this situation. Figure 22 shows the saturation 
field for three different values of permeability of the fractures.  
 

Figure 21 – Influence of the fracture permeability on the oil recovery 
 
 
  

Figure 22 – Saturation fields at 50 days for different values of permeability, a) 

  K
f = 8.26x10−12 m2 , b)  K

f = 8.26x10−11 m2,  and  c)  K
f = 8.26x10−10 m2 

 
Anisotropy of the rock matrix 
 
All tests up to this point were performed considering the rock matrix as isotropic in order to compare 
with available results from the literature. However, the model implemented in this work does not 
impose such a restriction, and, as example, Figure 23 shows the saturation fields at 50 days for the 
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Case 1 without considering the capillary pressure and changing the value of the  Kxx component of 
the permeability tensor.  

Figure 23 - Saturation fields at 50 days for anisotropic permeability tensor of the rock matrix 
a) 

 
Kxx = K yy , b)  

Kxx = 2K yy  and c)  
Kxx = 4K yy  

 
Conclusions 
 
This paper addresses a numerical method for solving multiphase fluid flows in naturally fractured 
reservoirs using the discrete fracture method in conjunction with the Element based Finite-Volume 
method.  Even being the fracture network in a real reservoir extremely complex, which still precludes 
the ample use of the discrete fracture approach, efforts need to be done in order to understand and 
apply the numerical technologies to calculate the complex flow among rock-matrix and fracture 
media. In this paper, we addressed this topic using a conservative multi-point flux approximation for 
the unknowns of fracture and matrix.  Although the investigation has been performed for 2D fractured 
reservoirs, it was possible to demonstrate that the EbFVM is a viable alternative for discretizing the 
conservation equations of the fracture and matrix media. The linkage between rock and matrix is 
naturally handled due to the conservative approach of the method, and the contribution of the 
fractures is naturally added to the fluxes of the matrix. Results are presented for several cases in terms 
of oil production and water saturation fields. From the outcome of the numerical tests, one can state 
that the treatment of the anisotropy of the matrix coefficients, which creates difficulties for the 
solution of the linear system, is still an open issue.  
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