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Abstract. The 3D transient hydrodynamics of gas-solid flow in a turbulent circulating fluidized bed is numerically 
studied. The grid refinement is carefuly handled to be adequate for capturing the structures of agglomerated  particles 
(clusters and strands) which are found in the so called meso-scale. A sub-grid model (LES) is applied for the gas phase 
and extended for the solid phase. The numerical results are compared with the experimental ones with good 
approximation for the average axial velocities for the solid phase. The sub-grid model employed gives good behavior 
at near wall and intermediate regions, with deviation in the central region (dilute) by over-estimating the drag. This 
deviation seems to be caused by the way drag is calculated by the two-fluid model. Spectral analysis is also performed 
for the studied cases. The inertial region was observed by the spatial and temporal resolutions, to have a -5/3 slope, 
indicating that the refinement in space and time was adequate.  
  
Keywords:  two-phase gas-solid flow, turbulence, fluidized bed, clusters, sub-grid models.  

 
1. INTRODUCTION  
 

Circulating gas-solid fluidized beds (CFB) are common devices found in many operations in the chemical, 
petroleum, pharmaceutical, agricultural, biochemical, food and power generation industries. The hydrodynamic 
behavior of fluidized systems is non-linear and therefore very complex. Scale-up from lab-scale to industrial scale, a 
strong requirement when designing new equipments, is a major problem. The nature of hydrodynamic interactions at 
various scales in such devices present great challenges when attempting to model them mathematically. The most 
common practice is to use averaged transport equations for two-phase flows, van Wachem (2000), Zhang and 
VanderHeyden (2001), Agrawal et al. (2001), Huilin et al. (2003), among several others. While these efforts presented 
some success, the estate-of-the-art for two-phase flow simulation is still far from ideal. Meso-scale structures in the 
form of clusters and strands are commonly observed in dilute gas-particle flows. These structures affect the overall flow 
behavior, with greatly influences in momentum and energy exchanges, and should therefore be accounted for in 
computational fluid dynamic (CFD) simulations of CFB’s. 

Unfortunately, the meso-scale structures cannot be adequately resolved in CFD simulations of typically sized 
CFB’s. The goal of the present study is to evaluate a sub-grid model to account for the effect of the unresolved meso-
scale structures in a circulating gas-solid fluidized bed and compare to a well characterized fluidized bed experiment 
performed by van den Moortel et al. (1998). In what follows, we discuss some background on the averaged equations 
for two-phase gas-solid flows and present the sub-grid model used and the results compared with experiment. 

    
2. CONTEXT OF THE GAS-SOLID FLOW PROBLEM 
 

Computational fluid dynamics (CFD) is an emerging technique for predicting the flow behavior of many systems 
required scale-up, design or optimization. Although single-phase CFD tools are widely and successfully applied 



(Anderson, 1995), multiphase flow remains unresolved due to the complex mathematics and the difficulty in the 
physical description (van Wachem, 2000).  

CFD models for gas-solid flow can be divided into two groups, Lagrangian and Eulerian models. Lagrangian models 
or discrete particle models, calculate the path of each individual particle. The interaction between the particles can be 
described by a potential force and by collision dynamics. The drawbacks of the Lagrangian technique are the large 
memory requirements and the large calculation time. Moreover, the description of the drag force from the gas phase 
acting on each particle is difficult to model accurately, and this is in practice based on experimental correlations. In 
other words, it is impossible to track all gas/solid interfaces which exist in a real flow.   

Eulerian models treat the particle phase as a continuum performing an average on the scale of individual particles. 
Computations by this method can predict the behavior of dense-phase flows on a realistic geometry, van Wachem 
(2000). The drawback of this method, however, is that one requires complex statistics to translate the behavior of many 
particles into one continuum. For this purpose, often granular kinetic theory is generally employed. At a basic level, 
interactions between the fluid and particles are simply modeled with a drag force.   

As we know from single-phase flow, the nonlinearity of the convective term in the momentum equation gives rise to 
the Reynolds turbulence tensor. In two-phase flow, there are additional nonlinearities that rise from the mass-
momentum coupling in both the mass and momentum conservation equations, Zhang and van der Heyden (2001). Both 
these nonlinearities give rise to meso-scale phenomena called particle clustering in which particles aggregate into 
dynamic structures with higher than average volume fraction of solids. This phenomenon is observed both 
experimentally and numerically.  

Cluster formation is observed in fine-grid (5-10 particle diameters (Agrawal et al. 2001 and 50-100 particle 
diameters (Zhang and van der Heyden, 2001, Georg, 2005). When the fine grid calculation results are averaged and 
compared with coarse-grid calculations results, different flow fields are obtained. Coarse-grid calculations filter out the 
meso-scale effects. Because of the meso-scale effects influence the macro scale behavior, they should be properly taken 
into account in the coarse-grid calculations by use of appropriate sub-grid model for the apparent viscosity, for example.  
Horio and Kuroki (1994) measured the typical cluster diameter which was 10-100 times the particle diameter.  

The downward motion of a cluster causes a major variation in the local velocity profile and should therefore lead to 
a significant increase in the production of gas-phase turbulence arising form stiff gradients in mean velocities, Geraldine 
et al. (2004) and Georg (2005). This idea is supported by the computational data of Agrawal et al. (2001), in which a 
strong increase in gas-phase turbulence production resulting from cluster formation was found. Clustering can increase 
the gas-phase turbulence through other mechanisms as well. Because the effective cluster diameter is large, the cluster 
will interact with the gas similarly to a large particle, even if only temporarily. It is known that a large diameter particle 
can significantly enhance the gas-phase turbulence through the vortex-shedding mechanism and through the formation 
of temporary wakes behind the (larger) particles or the clusters, Geraldine et al. (2004). Another mechanism is by the 
vortex stretching associated with the small areas available for the gas flow caused by cluster formation near wall, Georg 
(2005). 

The purpose of the present study was to better understand the basic behavior of the simple gas-solid flow equations 
before introducing any particle-particle interactions models. By comparing numerical results with experimental data we 
are able to make some quantitative assessment of the adequacy of the simple gas-solid flow equations and the sub-grid 
model proposed. We also use transient high resolution simulations to attempt to fully resolve the meso-scale structures 
in the flow.  
 
3. AVERAGED EQUATIONS FOR TWO-PHASE FLOWS 
 

The majority of the authors, to obtain the governing equations for multiphase flows, refer to the pioneering work of 
Anderson and Jackson (1967) or Ishii (1975). Anderson and Jackson (1967) and Jackson (1997) use a formal 
mathematical definition of local mean variables to translate the Navier-Stokes equations for the fluid and the Newton’s 
equation of motion for a single particle directly into continuum equations representing momentum balances for the fluid 
and solid phases. The local variables are averaged over regions large with respect to the particle diameter but small with 
respect to the characteristic dimension of the complete system, to account for variations in the domain.  The averaging 
procedures, (see Jackson, 2000), can be applied to the equations of motion. Starting with the equation of mass 
conservation, for a incompressible fluid, it takes the form 

 

( ) ( ) 0=∇+
∂
∂

• gggggt
Uφρφρ ,                                                                                                                                   (1) 

 
For the solid phase, one has 
 

( ) ( ) 0=∇+
∂
∂

• ssssst
Uφρφρ ,                                                                                                                                     (2) 
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where gφ and sφ  are the volume fractions for the gas and particle phases and gU and sU  are the averaged velocities of 

the gas and particle phases. The resulting momentum balances for the fluid and solid phases are as follows 
 

    ( ) ( ) [ ] ( )gsggggggggggg P
t
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∂
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The first term on the right hand of the gas phase of motion represents the gas pressure, the second term is the 

averaged shear tensor of the gas phase, the third term represents the gravity force and the forth term is the traction 
exerted on the gas phase by the particle, the drag force. The first term on the right hand side of Eq. (4) is the solid 
pressure, the second term is the averaged shear tensor of the solid phase the third term represents the gravity force on 
the particles and the forth term is the drag force contribution to the solid phase.  

The gas stress was calculated using conventional Newtonian form and a modified one using Smagorinsky-like sub-
grid model as follows 

 

[ ] [ ] [ ]IUUUt ggeg
T
gggegg •∇−∇+∇= φµφµ ,, 3

2
,                                                                                                     (5) 

 

( ) ( ) ( ) 3/12/12
, ,1,0 zyxggggeg ∆∆∆=∆∆+= • ttρµµ                                                                                               (6) 

 
 where eg ,µ  is the effective viscosity of the gas phase modeled by a Smagorinsky sub-grid model and gµ is the gas 

phase viscosity  . In the same way for the particle solid phase, one has 
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( ) ( ) ( ) 3/12/12
, ,1,0 zyxsssses ∆∆∆=∆∆+= • ttρµµ                                                                                                 (8) 

 
where es,µ  is the effective viscosity of the solid phase and sµ is the solid phase viscosity and ∆  is the filter width. The 
solid pressure are given by Gidaspow (1994) relations  
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where ,637,0max =φ  ,10 PaG = 600=c . c is the fictitious speed of sound for the particle material when it is 

closely packed, and  maxφ  is the close packing volume fraction for particles. The effect of particle pressure gradient 
term is to keep the particles apart so that the calculated particle concentration does not exceed the maximum 
concentration obtainable for a given size distribution of the particles. The gas-solid inter-phase drag coefficients, 
Gidaspow (1994), are 
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Where dp is the particle diameter. Equations (1-14) are known as the “Two Fluid Model” and it models an 

isothermal gas-solid two-phase flow. In the solid and gas phases a Smagorinsky like sub-grid model is incorporated in 
one of the simulated cases (Case 2).  
 
4. DESCRIPTION OF NUMERICAL SIMULATION 
 

Simulations performed in this study used the geometry described by van den Moortel et al. (1998). The cross-
section of the fluidized bed is 20x20 cm2 and the total height is 200 cm. The geometry and grid distribution are 
illustrated in Fig. 1. The dimension of each volume of the grid was 0.625x0.625x1.33 cm3, with 153600 volumes. 

 

           
 

Figure 1. Computational domain and grid.   
 
van den Moortel et al. (1998) reported they used particles with mean diameter of 120 µm with standard deviation of 

the particle diameter of 20 µm. In this paper we ignored the particle size distribution and used the mean diameter. Using 
this particle diameter we have about 52x52x110 particles enclosed in a x,y,z volume for the grid refinement used.  
Viscosity of the particle phase was set to be 0.0185 kg/m.s, Gidaspow (1994), and the particle material density sρ was 
set to be 2400 kg/m3 as in the experiment. We used a gas density of 1.2 kg/m3 and viscosity of 1.7 x 10-5 kg/m.s.   

The numerical simulations were carried out using the CFD code ANSYS CFX 5.6®, which use an element-based 
finite volume scheme. We implemented the sub-grid model in the multiphase code version of CFX 5.6® using higher 
resolution scheme for space discretization and a second order backward difference scheme for the time discretization. 
The time step used for all simulations was 1x10-3 seconds.   

In the simulations, the boundary condition on the solid walls was treated as no-slip for both phases. Generally the 
free slip boundary conditions are used for the solid phase. Jackson (2000) suggests as boundary condition for de solid 
phase an energy balance. Andrews et al. (2005) conclude that different wall boundary condition only contributes to a 
small change near the wall region. As we do not account for energy balance, and based on the recommendation of 
Andrews (2005), one chooses no slip boundary conditions for the solid phase.  

The boundary condition for the inflow velocities at the bottom of the device is assumed to be uniform. The flux of 
the gas is determined by the superficial gas velocity reported by van den Moortel et al. (1998). The volume fraction of 
particle inflow is assumed to be 0.4, which is the value for the minimal fluidization conditions. The superficial velocity 
of the gas phase was 1 m/s for according to van den Moortel et al. (1998) data.  

Simulations starts with the particles uniformly distributed in the fluidized bed and the velocities for both phases set 
to zero. The simulations were continued until about 15 seconds of real time. The statistical steady state was reached in 
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our simulations after about 2 seconds of real time, knowing that the characteristic time of the flow is 0.2 seconds and 
the relaxation time for the particle phase is 0.11 seconds, providing a Stokes number of 0.55 and a particle Reynolds 
number, Rep~6.  

For the gas phase the Kolmogorov length scale is η ~0.015 cm and the time scale is about of 0.002 seconds. Note 
that with this scales we do not resolve all the length scales for the gas flow. For the particle flow the grid size and time 
resolution is adequate to account for the presence of clusters and strands supported by the experimental results of Horio 
and Kuroki (1994).  
 
5. NUMERICAL VERSUS EXPERIMENTAL RESULTS  
 

Experimental results of van den Moortel et al. (1998) for the case of 1 m/s superficial gas velocity were used. We 
compare our averaged numerical results, 2s after start-up in the simulations. First we show the fine meso-scale 
structures, particle clusters and strands. 

  

a)   b)   c)   d)   e)   f)  

Figure 2. Particle volume fraction contours on a mid-plane (z=10 cm). Figures a), c) and e) denote Case 1, without sub-
grid model, at 3.8, 4.0 and 4.2 seconds; Figures b), d) and f) denote Case 2, with sub-grid correction for both phases, at 

3.8, 4.0 and 4.2 seconds. Gray scale represents particle agglomeration and white color represents gas phase. 
 
Figure 2 shows simulations for two cases, Case 1, without using sub-grid model and Case 2 using sub-grid model 

for both phases. What we see in this figure is qualitatively similar to results obtained by Agrawal el al. (2001). The 
strands are thin and oriented in the axial direction and clusters are present near the wall. The bottom region of the bed is 
denser than the top region, characterizing a turbulent fluidized bed regime. We can see that strands do not stay only near 
the wall, appearing at the center of the bed, oriented some times in the lateral direction. Clusters and strands are 
continuously formed and destructed, giving rise to lateral fluctuations of the solid volume fraction. As the gas phase 
passes throughout the clusters it carries solid, forming new structures, but now more dilutes. Case 1 is denser near the 
bottom of the bed than Case 2, but for both cases the meso-scales are present and were adequately captured. For the 
Case 2 the structures appear thinner and the top of the bed is more dilute than Case 1.  

As mentioned above, Agrawal et al. (2001) obtained computed meso-scale structures in their gas-solid flow 
simulations. There are, however, some key differences between their results and the one presented in this work. 
Agrawal et al. (2001) computed on a small two-dimensional 1cm x 4 cm periodic domain, which is much smaller than 
used in this work. While our smallest space increment was 0.625 cm, Agrawal et al. (2001) computed space increments 



as fine as 0.016 cm. For larger mesh sizes, the numerical results significantly over-predict the particle mass flux, 
because the meso-scale structures are not resolved adequately by coarse grids, Geraldine et al. (2004). Inside a particle 
cluster the particle phase feels less drag since it falls in the “wake” generated by the leading part of the cluster. In the 
case of a coarse grid, this effect is not resolved, so particle drag is overestimated, Agrawal et al. (2001). This effect is 
more pronounced at dilute regions of the bed as we will see in our averaged results.  However, the results presented in 
Fig 2, reveals qualitatively all meso-scale structures pointed out by Agrawal et al. (2001) and the characteristics of the 
turbulent fluidized bed regime are adequately represented.  

The averaged results are calculated using Favre average of volume fraction and velocity of each phase, the same 
method used by van den Moortel et al. (1998) for their experiments, as follows  
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The subscript i=g,p for the gas and the particle phase, respectively.  Averaged velocity of each phase, defined above, is 
weighted by the volume fraction of the particle phase.  

Figure 3 shows the averaged particle vertical velocity for Case 1 and 2. Calculated particle velocities agree with the 
trends of the experimental results overestimating the downward velocities near the wall, while in the center region 
(dilute) the agreement is good, Fig. 3 (a).  
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Figure 3. a) Averaged particle vertical velocity profiles for Case 1 at z= 1m from the bottom of the bed; b) averaged 

particle vertical velocity profile for Case 2 at z= 1m form the bottom of the bed. Experimental results from van den 
Moortel et al. (1998).  

 
When the results for Case 2 are compared with experiment, Fig. 3 (b), the particle velocities near the wall agree very 

well, however, at the dilute region the velocities are even more overestimated more than for Case 1. Comparing the 
results for Case 1 and 2 we see that the sub-grid model obtained a very good approximation at the dense region of the 
bed what does not occur when no sub-grid correction is applied.  

These results show that the use of the sub-grid model can be appropriated according to the region of the flow. Near 
the wall we would use the sub-grid model, and at some distance from the dense region it could be used a modification 
of the present sub-grid model. We stress that we do not make any tests to modify the sub-grid constant (Eq. 6 and 8).  

 
5.1 Power spectrum density 
 

In this sub-section we show the power spectrum density (PSD) for the two cases studied. Figure 4 shows the total 
energy spectrum for Case 1, Fig. 4 (a), and the particle velocities fluctuation power spectrum density, Fig. 4 (b). As 
seen in Fig 4 (a), the total energy is greater at the central region than near wall, for the large length scale. The inertial 
zone begins around 0.4 Hertz for the center velocities and 0.2 Hertz for the wall. Similar frequency has been reported by 
Neri and Gidaspow (2000), using kinetic theory approach for particulate phase. This frequency represents the formation 
and destruction of cluster structures. These frequency oscillations of gas-solid flow could be used to know the minimum 
time required to conduct proper time averaging, which for our case is 5s. Note that we take averages over 13 s. 
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Figure 4. a) Power spectrum density of the simulated particle velocities for Case 1; b) Power spectrum density of the 

simulated particle velocities fluctuations for Case 1. 
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Figure 5. a) Power spectrum density of the simulated particle velocities for Case 2; b) Power spectrum density of the 

simulated particle velocities fluctuations for Case 2. 
 
The power spectrum density for the fluctuation of the particles velocities for the central region, Fig. 4 (b), has more 

energy than for the wall region. The inertial region decay with -5/3 begins about 0.4 Hertz for the center and about 0.7 
Hertz for the near wall region. The turbulent kinetic energy at central region is greater than wall region. From 10 Hertz 
the slope for the particle velocities PSDs at the wall is augmented significantly, indicating major dissipation at this 
region, where cluster are encountered with major frequency which contribute with the greater dissipation.  

The Kolmogorov -5/3 law is obeyed in the inertial range, like the experimental results for gas-liquid-solid flow 
obtained by Cui and Fan (2004) with the same particle diameter used here and there obtained by Moran and Glicksman 
(2003) for the same particle diameter for gas-solid flow.  

Figure 5 (a) shows the total spectrum of energy for the particle velocities at central and near wall regions for Case 2. 
The central region has more energy associated with large scale than wall region. Inertial sub-range begins about 0.45 
Hertz for central region and 0.3 Hertz for wall with -5/3 decay. The power spectrum density of the velocities 
fluctuations, Fig 5 (b), has the same behavior as Case 1, Fig 4 (b). From 10 Hertz the dissipation of kinetic energy is 
major than Case 1 for near wall region.  In both cases 1 and 2, at low frequencies, we see coherent structures 
represented by the great peaks. As the large scales structures are broken these peaks are smoothed to form the inertial 
region. The first peak appears about 0.3 Hertz representing the natural frequency of gas-solid flow in a fluidized bed. 

The results presented in this section shows that the sub-grid model used was appropriate to represent the 
characteristics behaviors of gas-solid flow in a circulating fluidized bed, as mentioned above, especially near the wall 
region of the bed. The very good approximation of the averaged velocity to the experimental data near the wall for the 



sub-grid model results, Case 2, shows the applicability of this methodology. The power spectrum density results are 
coherent with experimental data and the results obtained by kinetic theory.  
 
6. CONCLUSIONS 
 

Numerical simulations using the Two Fluid Model for multiphase flow were performed with the appropriate grid 
refinement to account meso-scale structures like clusters and strands. Comparisons were made with experimental results 
showing good agreement for certain regions of the flow using a sub-grid model. The outcome of the work suggests that 
Smagorinsky-like sub-grid model could be used in gas-solid flow with proper modifications for the dilute region of the 
circulating fluidized bed. Very good agreement for the near wall averaged particle velocities was found. The 
characteristic behavior of a turbulent fluidized bed was well represented with the bottom of the bed more dense than the 
top with clusters and strands presented in all locations of the bed. The results for the Case 1 showed that the bottom 
region of the bed was denser than for the Case 2.   

Spectral profiles shows that the dissipation is greater near the wall and the decay of the power spectrum obey the 
Kolmogorov -5/3 law, indicating that the refinement in space and time was adequate. The natural frequency calculated 
by kinetic theory is captured.  

Generally in gas-solid flows the particle viscosity is modeled as an empirically function of the particle volume 
fraction (e.g. Huilin et al. 2003). Results presented in Fig. 3 (a) for Case 1 (where the viscosity was maintained 
constant), suggest that this function is not needed for the fluidized bed studied here. For the Case 2 the viscosity was 
modeled with sub-grid corrections which are a function of the strain tensor. Results for Case 2, Figure 3 (b) shows a 
modified profile of the Favre averaged particle velocities in the central region when compared with the Favre averaged 
particle velocities for Case 1. Because the viscosities of Case 1 is constant and for Case 2 are not, we may conclude that 
the deviation of results for Case 2 is originated from this difference. As the stress for gas and solid phase, Eq. 5 and 7, 
are dependent on the volume fractions, we could conclude that the volume fraction already contribute to modify the 
stress and may not necessarily be included in the viscosity formulation.   

It is important to mention that the averaged results for Case 1, Fig. 3 (a), suggests that a refinement of the grid will 
produce better results, dispensing the use of a sub-grid correction, but augmenting the computation cost.        
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