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Abstract. Polygonal grids are unstructured grids formed by generic control volumes with an arbitrary number of faces.

Therefore, they are able to represent complex geometries efficiently. Considering such type of grids, this paper focuses

on the analysis of gradient reconstruction methods that can be applied to the discretization of flow models in petroleum

reservoir simulation. The purpose of these methods is to approximate the gradient vectors associated with all control

volumes of a polygonal grid, employing only discrete values of pressure, related to the control volume centroids. The

analyzed methods belong to two main groups: one of them uses the Green-Gauss formula, derived from the divergence

theorem, and the other one transforms the gradient reconstruction problem into a least squares problem. In order to

determine the gradient reconstruction methods that give more accurate numerical results in a reasonable computational

time, several tests are performed. The numerical results are analyzed according to the convergence rate of the pressure

gradient and also according to the magnitude of the norm of the truncation error associated with the reconstruction

process. The main objective of this work is to determine which reconstruction methods have better cost/benefit ratio. This

knowledge could contribute to develop more efficient numerical simulators using polygonal grids.
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1. INTRODUCTION

The main feature of polygonal grids is that control volumes have an arbitrary number of faces. They are constructed
from triangular or quadrangular grids to reduce the number of unknowns if these original grids were used as control
volumes. In petroleum reservoir simulation, the flexibility of these kind of unstructured grids allows a more accurate
geometry representation of the reservoir. However, in order to be able to employ these grids is necessary to develop
discretization methods to handle such generic control volumes. A possible alternative is one based on explicit gradient
reconstruction. Following that approach, the flow across a control volume face is approximated employing pressure
gradients determined from the so-called reconstruction methods.

The main task of gradient reconstruction methods is to approximate gradient vectors, associated with all the control
volumes, employing a reduced set of discrete values of a scalar variable, the pressure in the present case. Since a cell-
centered scheme is considered here, the discrete pressure values must be associated with the cell centroids. In order to
apply a gradient reconstruction method, those pressure values must be known. Figure 1 shows a schematic representation
of the role of a gradient reconstruction method. In this paper, three gradient reconstruction methods are described and
their performance are evaluated in order to identify those with better cost/benefit ratio.

2. GRADIENT RECONSTRUCTION METHODS

The gradient reconstruction methods considered herein can be divided into two groups: the first one is based on
the Green-Gauss formula, derived from the divergence theorem, and the second one reduces the gradient reconstruction
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Pressure Gradient

Figure 1. Schematic illustration of the application of a gradient reconstruction method.

problem to a least squares problem.
With the Green-Gauss formula is possible to approximate the gradient vector in an arbitrary control volume through

(∇P )p ≈
1

∆Vp

∑
f∈p

Pf ∆Sf , (1)

where ∆Vp is the volume of the control volume, Pf is the pressure value at each face centroid on the control volume
boundary and ∆Sf is the area vector associated to each of these faces. As a cell-centered scheme is considered in this
work, in order to obtain pressure values at face centroids is essential to use some kind of interpolation. Two interpolation
strategies are reported in the literature, the first one is called cell-based approach and the other one vertex-based approach.

The first reconstruction method considered employs the Green-Gauss formula in association with the cell-based ap-
proach. This approach utilizes known pressure values, associated to the control volumes that share a given face, to
determine the pressure value at this face centroid. The interpolation expression that characterizes the approach can be
written as

Pf = (1− βf ) Pp + βfPn, (2)

where Pf , Pp and Pn are the pressure values located at the face centroid and at the control volumes p and n, respectively.
The weighting factor βf can be calculated considering the following distance weighted average

βf =
rp,n · rp,f
|rp,n|2

, (3)

where rp,n is the vector connecting the centroids of the control volumes p and n and rp,f is the vector that connects the
centroids of the face f and the control volume p.

The other method that uses the Green-Gauss formula employs the so-called vertex-based approach. Here, face pressure
values are determined using vertex pressure values. Since in a cell-center discretization method there are no available
vertex discrete values, some averaging procedure must be used, like the one found in Lee et al. (2010)

Pv =

Nv∑
k=1

wkPpk

Nv∑
k=1

wk

, (4)

whereNv is the number of control volumes surrounding a vertex of the grid, Ppk
represents the pressure values associated

with these volumes and wk represents the weighting factors.
When these weighting factors wk are determined through the so-called pseudolaplacian procedure, initially proposed

by Holmes and Connel (1989), a second order accuracy is ensured for the approximation of the pressure values at the
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vertices. For this to happen, the condition of null pseudolaplacian must be satisfied,

Nv∑
k=1

wk(rpk
− rv) = 0, (5)

where rpk
represents the position vector of a control volume surrounding the analyzed vertice and rv is the position vector

of this vertice.
After obtaining pressure values at all the vertices of the grid using Eq. (4), the pressure values associated to all faces

can be determined by a simple arithmetic average. Then, employing the Eq. (1) is possible to finally determine the
pressure gradient vector associated with all the control volumes of the grid.

The second group of reconstruction methods employs a strategy that transforms the problem of approximating a
gradient into a least squares problem. According to it, the pressure variation in the neighborhood of a control volume is
assumed to be linear. Considering variation between the centroids of a control volume p and its neighbor nk, the pressure
in the latter one can be written as

Pnk
≈ Pp + (∇P )p · rp,nk

, (6)

where rp,nk
is the vector that connects the centroids of the volumes p and nk, whose Cartesian components are ∆xk and

∆yk. The expression is valid for k = 1, 2, ..., Nvc, whereNvc is the number of neighbor volumes of p. The approximation
error in the previous expression is second order, because it is actually a truncated Taylor series expansion in which terms
of second order and higher are neglected.

Considering all the neighbor control volumes of p, it is possible to write Eq. (6) in an alternative manner, thus obtaining
a linear system of equations. As is found in Correa et al. (2011), this system can be written in the matrix form

λ1∆x1 λ1∆y1

λ2∆x2 λ2∆y2
...

...

λm∆xm λm∆ym




∂P

∂x

∣∣∣
p

∂P

∂y

∣∣∣
p

 =


λ1(Pn1 − Pp)

λ2(Pn2
− Pp)

...

λm(Pnm
− Pp)

 , (7)

in which m = Nvc and λk are weighting factors. These factors are usually geometric factors that take into account the
distance between adjacent control volumes. In the present work an inverse square distance weighting is considered.

It can be noticed in Eq. (7) that the unknowns of the linear system are the two components of the pressure gradient
vector, (∇P )p = (∂P/∂x, ∂P/∂y)p, since the pressure values associated with the control volumes are supposed to be
known. However, the number of equations, equal to the number of neighboring control volumes of p, is usually greater
than two. Linear systems like this are called overdetermined and can be solved in the sense of a least squares problem. A
lest squares problem can be solved using different techniques (Strang, 1988). That one employed in this work was the QR
factorization.

In order to identify the gradient reconstruction methods in a compact way, they will be referred by abbreviations.
GGCB will represent the method employing the Green-Gauss formula in association with the cell-based approach, GGVB
will represent the one using Green-Gauss with the vertex-based approach, and finally LS will be the one employing the
least squares method.

3. RESULTS

Tests were performed in order to determine which method has the best performance regarding to the gradient appro-
ximation accuracy and the associated computational time. The first aspect was analyzed considering four sets of polygonal
grids. Each set is formed by five grids with the same structure and distortion type, but different refinement level. A grid of
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each set is shown in Fig. 2. The computational time was analyzed considering only one set of grids, called here as regular
grids. These grids are formed mainly by hexagons of the same size and shape.

(a) (b) (  ) (d)c

Figure 2. Examples of grids used in the tests: (a) REG - Regular; (b) SIN - Sinusoidal; (c) RAN - Random; (d) STC -
Stretched

The strategy considered was to apply the reconstruction methods to discrete pressure values obtained from analytic
functions. Differentiating these functions, it is possible to calculate the exact values of the gradients associated with all
the control volumes of the grid. With those exact values, the error associated with each gradient reconstruction method
can be measured and its behavior, considering a progressive grid refinement, can also be analyzed. Hence, it is possible
to estimate the convergence order related to each reconstruction method. More precise methods show higher convergence
orders.

The analysis domain in the tests was a unitary square with the origin located at the bottom left corner. The expressions
of the analytic functions, linear and oscillatory, are, respectively

P = 5x− 3y, (8)

P = 5x− 3y +B [sen(7x+ 1) sen(4y + 1)] . (9)

In order to measure the gradient approximation error on the whole grid, the dimensionless form of the L2 norm of this
error was employed (Hurtado, 2011)

εgrad =


Nc∑
i=1

|∇P num
i −∇P a

i |2∆Vi

Nc∑
i=1

|∇P a
i |2∆Vi


1/2

(10)

where Nc is the number of control volumes of the grid and ∆Vi is the volume of each of these entities. On a specific
control volume, the numerical gradient and the analytic gradient are represented by ∇P num

i and ∇P a
i , respectively.

Finally, to estimate the convergence error associated to each gradient reconstruction method is necessary to define a
characteristic length of the grid

h =

Nc∑
i=1

(∆Vi)
1/2

Nc
, (11)

where the sum is done considering all the control volumes of the grid.
The numerical results obtained with the reconstruction methods are represented in graphs εgrad x h. In the graphs are

also included fitted lines, whose inclination is directly related to the convergence order of each method. The dashed lines
are only reference lines included for comparison purposes, indicating first and second order error decreasing, respectively.
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It was observed in the tests using a linear function that the LS and GGVB methods provide exact gradient values in
the entire domain. An explanation for these results can be found in (Cerbato, 2012). In relation to GGCB method, there
exists an error even with linear fields, with very low convergence order.

The plot in Fig. 3 (a) shows the reduction of the error norm considering the pressure discrete values coming from
the oscillatory function. Since that function is no longer linear, the GGVB and LS methods do not give exact gradients
anymore. The estimated value of the convergence order for these two methods are quite close and near second-order. For
the GGCB method were obtained the highest values of the error norm and the smallest value of the convergence order,
which is close to one.

(a) (b) 

STC
RAN
SIN

REG

Figure 3. (a) Convergence of the pressure gradient considering the regular grids. (b) Convergence of the pressure gradient
in different grids considering the GGCB method.

The purpose of the following tests is to check the sensitivity of the methods with respect to the distortion of the
polygonal grids shown in Fig. 2. For simplicity, these grids will be named as: REG (regular), SIN (sinusoidal), RAN
(random), and STC (stretched). The tests were performed considering the pressure field obtained from the oscillatory
function.

The graph in Fig. 3 (b) displays the behavior of the norm of gradient error employing the GGCB method. It is possible
to note that the method fails to adequately treat the grids with random distortion (RAN). The reduction of the error norm
with the refinement of the grids is quite low, being the trend line a nearly horizontal line. For the other grids, it is noticed
that the trend lines present an inclination, however, it does not even close to first order. As it will be seen in the next
graphs, the values of the error norm obtained through GGCB method are the highest among the analyzed methods.

The convergence of the pressure gradient obtained with the GGVB method is shown in Fig. 4 (a). The performance
of this method is more uniform varying the types of polygonal grids. The estimated values of the convergence order are
higher than unity for all the cases. The difficulty found in GGCB method to deal with the RAN grids no longer exists.
Thus, the GGVB method is less sensitive to distortions of the grids than the other method that employs the Green-Gauss
formula.

The best performance among the mentioned methods is noticed in Fig. 4 (b), which corresponds to the LS method.
This method is insensitive to the distortion of the polygonal grids. As can be seen in the figure, the inclination of the lines
are practically the same, only varying the level of the error norm. The behavior noticed in the graph was expected, since
the LS method does not depend on the geometry of the control volumes. The method only depends on the positions of the
control volume centroids.

The computational time associated with the reconstruction methods was also analyzed. The comparison is done
through graphs time versus characteristic length of the grid. Once again the regular grids and the oscillatory function
are employed. In order to characterize the computational time, two new concepts were used: the startup time and the
reconstruction time. The first one is the time spent with the calculation of fixed parameters, dependent on geometry
factors. The weighting factors βf and λk, found in Eqs. (2) and (7), are examples of fixed parameters. On the other hand,
the reconstruction time is that one spent on gradient reconstruction operations. These operations employ the parameters
calculated at the startup and the current values of pressure. For instance, the reconstruction time associated with the GGVB
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Figure 4. (a) Convergence of the pressure gradient in the different grids considering the GGVB method; (b) Convergence
of the pressure gradient in the different grids considering the LS method.

method considers the calculation of the pressure values at the vertices, at the face centroids and also the substitution of
those values into the Green-Gauss formula to finally obtain the pressure gradient.

In Figs. 5 (a) and 5 (b) are shown the graphs of the startup and reconstruction times related to the methods GGCB,
GGVB and LS. Comparing the reconstruction times, there is no significant difference between the three methods. This is
a positive point because it means that the more accurate and robust methods, GGVB and LS, do not consume much more
time than GGCB to reconstruct gradients. The higher computational cost of the GGVB and LS methods is on the startup
phase, as can be seen in Fig. 5 (a). The parameters calculated at this phase are fixed, thus, it will be executed only once
and it will not lead to a substantial difference in the computational times when the reconstruction methods are applied to
the solution of differential equations.

(a) (b) 

Figure 5. (a) Startup CPU time. (b) Reconstruction CPU time.

4. CONCLUSION

Some gradient reconstruction methods applied to polygonal grids were analyzed in the present work. The purpose of
those methods is to approximate gradient vectors employing discrete values of a scalar variable. Tests were performed in
order to determine which methods would be more adequate for a future application to the discretization of a flow model
in petroleum reservoirs using polyhedrical and polygonal grids

The reconstruction methods that exhibit a good cost/benefit ratio, i.e., good numerical results in a reasonable comput-
ing time were the method based on least squares approximation (LS) and the Green-Gauss method with the vertex-based
approach (GGVB). This superiority is confirmed by the fact that they are more accurate, robust and they do not demand
much more time than the other reconstruction method to fulfill their task. When applying the reconstruction methods
to even more distorted grids, it is expected that the LS method stand up, since, as mentioned, it does not depend on the
geometry of the control volume.
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