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Abstract 
 

This paper presents a mathematical model and its numerical treatment for the forecasting oil spills trajectories in the 
sea. In order to estimate these slicks trajectories a new model, based on the mass and momentum conservation equations 
is presented. The model considers the spreading in the regimes when the inertial and viscous forces counterbalance 
gravity and takes into account the effects of winds and water currents. The numerical model is developed in generalized 
coordinates, making the model easily applicable to complex coastal geographies. Due to the similarity of the resulting 
equations with those used in Shallow Waters models, an adaptation to Finite Volume Method and generalized 
coordinates of the Semi-Implicit Finite Difference method presented by [Casulli and Cheng 1992] is used in this model. 
 
INTRODUCTION 
The sea transportation of crude oil by tankers or 
offshore pipelines has a significant associated risk of an 
accidental spill. When such spills occur near tourist or 
fishing regions, the damage is still worst. The recent oil 
spill in the Guanabara Bay, Rio de Janeiro, Brazil, 
caused by a pipeline rupture is a strong example of this 
broad impact. 
The detailed knowledge of the spilled oil position and 
the area covered by the slick is of fundamental 
importance to take appropriate actions against pollution, 
like use of floating barriers, detergents, dispersants, etc. 
It is also important the estimation of potential risks in 
selecting pipeline routes, locating shoreline tanks and 
petrochemical industries. Therefore, a model to forecast 
the time-space evolution of the oil slick should make 
part of any environmental program that has the purpose 
of oil pollution combat. 
As any fluid mechanics problem, two approaches for 
computing oil slicks trajectories are commonly 
encountered in the literature; Lagrangian and Eulerian 
models. Lagrangian models [Shen e Yapa 1988] consist 
basically in representing the oil slick by an ensemble of 
a large number of small parcels, which are advected by 
a velocity resulting from the combination of the action 
of winds and currents. Then, the slick is divided into pie 
shaped segments or strips, depending if the form of the 
slick is nearly circular or elongated and [Fay 1971] 
spreading formulas are applied to each segment to 
compute the spreading of the slick. Fay´s formulas 
consider the spreading of an oil slick in calm waters, 
where a slick, initially circular, will remains circular, 
just increasing its diameter. For the Eulerian approach, 
two model are usually encountered, those based in the 
mass and momentum equations applied to the oil slick 
[Hess and Kerr 1979], [Benqué et. al.1982], and those 
based on a convection-diffusion equation [Venkatesh 
1988] (among others), in which the diffusive part of the 
equation represents the spreading of oil by itself and the 
convective terms represents the advection of oil by 
currents and winds. The model presented in this paper 
belongs to the first category of Eulerian models and it is  

 
 
based on the integration of mass and momentum 
equation over the thickness of the oil slick. It considers 
the spreading in inertial-gravity and viscous-gravity 
regimes, the slick transport by currents and wind and the 
oil evaporation. 
 
MATHEMATICAL MODEL 
The governing equations for the slick trajectory, are 
obtained by integrating the Navier-Stokes equations 
along the thickness of the slick. 

Figure 1: Variables considered in the vertical integration 
of governing equations. 

Figure 1 shows schematically an oil slick being 
transported by the tensions exerted by water currents 
and winds. The oil flow is governed by mass and 
momentum equations for incompressible flows. These 
equations are: 
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Following [Hoult 1972], we can consider that the oil 
viscosity is much large than the water viscosity. Thus, 
the vertical velocity gradients within the oil are much 
less than these gradients in the water or in the wind. It 



 

 

is, therefore, a good approximation to consider that the 
flow parameters (velocity and pressure) do not vary 
across the thickness of the slick. 
After the integration, the governing equations obtained 
are, 
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where the bar variables represent vertical integral 
averages, h is the oil slick thickness and ∆ is a 
parameter which relates the oil and water densities 

( ) wwo ρρρ /−=∆ . The terms τ represent the shear 
tensions on top and bottom of the slick exerted by winds 
and water currents, respectively. These tensions were 
calculated as, 
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NUMERICAL SOLUTION 
As can be seen the governing equations are similar to 
Shallow Waters equations. Then the semi-implicit 
method presented by [Casulli and Cheng 1992] is used 
for the treatment of the coupling between the thickness 
and velocity. In this case, the Finite Volume method 
with co-located variables and generalized coordinates 
were used. Then the model is applicable to arbitrary 
geometries such as complex coastal geographies. The 
transformed equations in terms of computational 
domain coordinates, ξ and η are, 
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The variables ξ and η are the coordinates in the 
generalized coordinate system, and α, β and γ are the 
components of the covariant metric tensor, J is the 

Jacobian of the transformation and U
~

 and V
~

 are the 
contravariant velocities defined as 
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Integrating these equations in the volume P showed in 
Figure 2 and using WUDS [Raithby & Torrance 1979] 
as interpolation function  
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and central differences for the cross derivatives, 
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one obtains for the volume P, 
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where F[ ] is an is an explicit convective-diffusive finite 
volume operator1, given, for a generic scalar by 
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and it represents the convective-diffusive balance of the 
scalar variable at the volume P, in generalized 
coordinates. In this case, φ  represents the velocity 
components u and v. 

 

Figure 2: Control volume on the computational domain. 
                                                        

1 Further details could be seen in Paladino (2000) 



 

 

By the integration of the mass equation, in space and 
time, we have 
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Here, we need the contravariant velocities at the volume 
faces. Using Eqs. ( 10 ), and the velocities at the control 
volume interfaces given by, 
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we have for the east face , 
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were 

[ ] [ ] eee vFxuFyU ηη −=*~
 ( 21 ) 

and similarly for the other faces of the control volume. 
Note that for the evaluation of the velocity components 
at the interface we need the convective-diffusive 
operator evaluated at the volume interfaces. As the 
variables arrangement used is co-located, the velocities 
at the interfaces are not available. The proposition here 
is to evaluate this operator by an average of the 
operators calculated at the centers of the adjacent 
volumes, i.e., 
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Note that it not represents an arithmetical average of the 
velocity components, which is know to generate strong 
instabilities in the solution procedure, but it is an 
average of the equations of motion as suggested by 
[Marchi and Maliska 1994]. 
Substituting the contravariant velocities in Eq.( 17 ) and 
operating, we find for calculating the slick thickness 
field like, 
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Note that for compute the thickness field we need to 
solve a linear system of equations while the velocity 
field is calculated explicitly. 
 

BOUNDARY CONDITIONS 
Two type of boundary conditions were used in this 
model, where the domain limits coincides with 
shorelines no mass flux was prescribed and at the open 
sea locally parabolic conditions were assumed. This last 
condition type allows the slick to leave the 
computational domain without affecting the thickness 
distribution of the slick inside the domain. Then it is 
possible to define the domain just for the region of 
interest because the presence of the boundaries will not 
affect the results inside the domain. 
For the no mass flux condition, we have fro the velocity 
components a condition of prescribed variable, i.e., a 
Dirichlet condition with prescribed value equal to zero. 
If φ represents any component of the velocity vector, we 
have, 
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The cross derivatives are zero because the prescribed 
value is constant along he frontier. 

 

Figure 3: East boundary at the computational domain. 

For the mass conservation equation, it will be used a 
methodology proposed by [Maliska 1981] and [Van 
Doormaal and Raithby 1984]. To avoid the necessity of 
prescribe thickness values at the boundary, it is 
proposed to substitute the contravariant velocity at the 
frontier in the mass conservation equation, then the 
mass balance for the volume P of the Figure 3 results, 
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The other velocities are evaluated in the same way of 
the internal volumes. Then the equation for the east 
boundary volume is,  
 

BhAhA

hAhAhAhA

SWswNWnw

SsNnWwPP

++
+++=

 
( 27 ) 

Note that in this case the contravariant velocity at the 
frontier is zero and then the source term for Eq. ( 27 ) is, 
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For the open sea boundaries (Locally parabolic 
condition), we state that there is no variation in any 
variable normally to the frontier. For the volume P of 
the Figure 3, it means that, 
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and zero diffusive flux normal to the frontier, 
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Considering the equation ( 29 ) we have, for the mass 
balance at the frontier volume, 





 


 −

∆
∆

−

















−

′

∆
∆−=

sn

w
wPPPP

VhVh
t

UhUh
t

Jhh

~~

~~

00

000

η

ξ
ρ

 ( 31 ) 

The prime indicates the variable is calculated in 
function of the available values and this term will take 
part of the independent term B. In this case it is given 
by, 
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The solution procedure for the coupled system is: 
• Initialize all variables at t=0. The thickness of the 

oil for the whole domain is initialized with a small 
value (say 1×10-15) to avoid division by zero. Define 
the region and the thickness of the initial oil slick, if 
an instantaneous spill is considered. 

• Calculate the coefficients of the momentum 
equations. Determine the velocity field explicitly, i.e. 
no linear system has to be solved here. 

• With the most recent velocities, calculate the 
coefficients of the momentum equation. Compute the 
convective-diffusive operator to enter the evaluation 
of the source term of the mass equation. 

• Calculates the coefficients and source term of the 
mass equation and solve the oil thickness. 

• Recalculate the oil thickness field taking into 
account the mass transfer processes like evaporation, 
sinking, etc. 

• Advance a time step, update all fields and cycle 
back to step one. 

 
RESULTS 
To validate the model, the first step will be the 
comparison with available analytical solutions. For this 
problem the semi-analytical solution of [Fay 1971] are 
adequate. Physical validation requires field 
measurements. As was already mentioned, Fay’s results 
describe the spreading of an instantaneous spill in calm 
waters. The results for the gravity-inertial and gravity-
viscous spreading regimes are, respectively 
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In the above equations R is the slick radio (in calm 
waters the spreading is axi-symmetric) as a function of 
elapsed time after the spill and K is an empirical 

proportionality factor depending on the spreading 
regime. 
The following figures shows the results for the two 
spreading regimes considered by the model, for 
different oil densities and different initial spills. 
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(b) 

Figure 4: Comparison of theoretical [Fay 1971] and 
numerical solutions for axi-symmetric spreading in calm 
water, for (a) different volumes spilled and (b) different 

oil densities. 

In the first problem, the water body was considered 
initially quiescent, with the water movement induced by 
the oil movement.  
Figure 5 shows the effect of the boundary condition 
type as the slick approximates to the frontier. In the case 
of impermeable frontier oil accumulates against the wall 
increasing the slick thickness and begins to spread in 
transversal direction. For the locally parabolic 
condition, it could be seen that the slick leaves the 
domain without changes in the part remaining inside the 
domain. 
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Figure 5: Slick spreading and drifting with a constant 
water velocity of 0.5 m/s, in x direction, (a) no mass 

flux east boundary and (b) locally parabolic east 
boundary. 

Finally, to show the model features, it was applied to 
simulate an eventual spill at the vicinity of the harbor of 
São Fransisco do Sul, Santa Catarina, where there is an 
oil charge/discharge point at 9 km off shore. Therefore, 
this is a local with high spill risk, which could be caused 
by pipeline rupture or failure in charge/discharge 
operations.  
Figure 6, shows the domain definition at region of the 
port of São Francisco do Sul, the oil duct break locals 
and the definition of boundary conditions for the 
simulations. The domain has been extended into the sea 
just to cover the region of interest, reminding that, due 
to the locally parabolic condition far from the shoreline, 

if the slick passes through these boundaries, this does 
not affect the slick position inside the domain. 
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Figure 6: Domain definition for the simulations at the 
port of São Francisco do Sul. 

As this simulation has the only purpose to show the 
generality of the model applied to a coastal spill, and 
not to simulate accurately a real problem, the current 
field was considered spatially constant and variable as a 
sine function of time, trying to represent approximately 
the tidal currents. Reports of experimental 
measurements at the region show predominantly south-
southwest currents with residual currents of 
approximately 0.05 m/s and maximum tidal currents of 
0.16 m/s. The wind was considered from south-
southeast blowing at 30 km/h. 
To simulate the pipeline break, it was considered a 
pollutant source with constant mass flux injecting 1000 
kg/s during 10 h.  
Figure 7 shows th time space evolution of an oil slick 
caused by the pipeline brek. It could be seen the effects 
of the boundary conditions, at the shoreline, were no 
mass flux condition was imposed, the oil accumulates, 
increasing the slick thickness. In the case of an open sea 
boundaries, the slick leaves the domain without 
affecting its shape upstream. 
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Figure 7: Temporal-spatial evolution of an oil slick spilled at the harbor of São Francisco do Sul 

 
CONCLUSIONS 
This paper presented a mathematical and numerical 
model to predict oil spill movements in the sea. Results 
for the spreading in the calm water were compared 
with semi-analytical solutions and the agreement was 
good. Although there are no benchmark solutions 
available for the case where the water moves, the 
results for a general problem, where the water moves 
periodically in time, follow the expected physical 
trends and the mass center of the slick moves with the 
water current velocity.  
The model can be used to simulate in situ oil spills in 
order to assist pollution combat tasks, so it is an 
important tool in any oil spill contingency plan. It can 
be also used to estimate potential risks in decision 
support for tankers and oil ducts route selection, 
distilleries and ground tanks location, among other oil 
storing tasks. 
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