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ABSTRACT

The patural convection heat transfer in trisogulsr
enclosures is snalyzed numerically with the main goal of
comparing the oumerical results with the experimental
ones available ip the liturature. As & second objective
the paper reports the squivalent conductivity for the
trisngular cavity with different beight/base relations
and for Rayleigh pumber ramging from 0 te 5.3 10%,  The
oumerical results are obtained using a finite volume
method in boundary-fitted coordinates. The equivalent
conductivity calculated numerically agrees wery well
with the experisental ooes.

INTRODUCTION

Fatural convection beat transfer is a subject which has received
enormous attention with the advenot of the oumerical techmiques. Io
the engineering poiot of view there are many situations vhere it is
oecessary to kmow the best traosfer coefficient inside enclosures for
becter designing engiveering equipments. If & review is carried out
trying to measure the ammount of publications dealing with the
oumerical solutiom of the oatursl coovection problem  inside
rectangular and square cavities, one is going to conclode that alsost
everything related to these cavities were alresdy iovestigated.
Boundary conditions ranging from the usual twe wertical bested
valls to wmixed boundary conditions in ome wall are reported im the
specislized literature. The preference for this geometry is due to the
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sasipess in designing computer codes for the oumerical solutiom of the
governing partial differestial equationms.

Triaogulsr encleosures, in the otber bhaod, bas received wary
little attention, despite its important applicaticns, specislly im the
sisulatice of & roof io the caleulstion of thermal behavieur of
buildings. Among the svailable work im the literature, FLACK ot 2lli
{1979) conducted an experimental work where the bottom side of the
trisngular enclosure is insulated while the left side is beated and
the right ooe cooled. FLACE (1980), also messured the heat transfer
coefficients im & trissgular cavity wvbers the botton side is heated or
cooled, instead of imsulated.

A recemt work by POULIKAKDS asnd BEJAN (1983) reports @
comprebansive study of the satoral coovection flow inside a triangular
cavity with a warm bottos wall where an asyeptotic analysis, inclodicg
transient response is also reported.

In this paper it is analyzed the situstion studied by FLACK
{1979} with the maio goal of comparing the oumerical and experimental
results, in & continuation process of assessing the oumerical methed
used im this work. The paper alsc snslyses the problem for angles
betwesn the incliced walls of 60, 90 and 110 degrees.

PROBLEM FORMULATION AND NUMERICAL METODOLOGY

The probles uoder asalysis is the oatural coovection inside a
triangular eaclosure as shown im Fig. 1, wvhere the appropriste
boundary cooditions are indicated, Using the Boussinesq approximstion,
the governing differential equacions, writtenm in the -1 pgeneralized

coordinate system are, for a general ¢ variable
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where Lhe parameters for esch equation are given im Table I. The otner

varisbles appesring is Eq. (1) are given by
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Detsils of the oumerical model can be found in MALISEA (1984) and
only the major features will be reported bere. The method solves the
conservation equation in & general curvilinear coordinate systes (E,n)
whose coordinate lines are coincident with the boundary of the domain.
The wequations are solved io a segregated manner and am  Exira-
equation for pressure is constructed using the PRIME method, as
described in MALISEA (1581). In this method the momentum equations are
solved in & point iteration fashion performiog ooe sweep in the
domain Ffor each cosfficient updating. The linsar system of equation
for pressure and temperature are solved using the nioe point wersion
of the M5 - Modified Stromgly Implict procedure of SCHNEIDER and
ZEDAN (1981).

BRIEF DESCRIPTION OF FLACK S ENPERIMENT

The air filled cavity comsist of two constant temperature Wwater
tanks with isclised bottoos and an horizontal sdisbatic wall, as sbowm
in Fig. ZI. The inclined plates are 10.78 cm loog (L) and 25.4 cam wide
and are made of polished aluminum 1.27 cm thick. The tempersture was
messured in wesch tank bottom (the inclined faces of the triangular
enclosure) using six thermocouples. The thermocouples distribution cas
be seen in the originsl publication. One tank was maintmioed at &«
constant bot tempersturs by an eletric heater and the temparature of
the cold surface was kept constsnot using sn ice bath mixture in the
sscond tapk. To keep the temperature uniform within 0.5°C both baths
were mixed by electrical stirrers.

The bottom surfacs (the ipsulated cne) was msde of bakelite and
beavily insulated.

A Wollaston prism schlisren interferometer vas used to make the

heat transfer peasurements. The local temparature gradients are
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proporticnal to the frimge shift. Froper equations for  this
ealculation is found jm FLACK et alli (1978} vhere they slso regort
that beat transfer sessurements around & ispthermal flat plate were
obtained with 5 percent difference when compared with previous

correlaticos. This was done for checking the apparstus.
NUMERICAL EXPERIMENTS

When attempting to obtain a numerical selutics of & probles the
grid reselution wtody wust be carried out in order to get the grid
independent solution. In this particular probles if the aoalyeical
golution is obtained for the pure conduction problem, ome can show
that the hest flux at the touching point of the heat aod cold walls
blows up (ARPACT (1966) and POULIKAKOS and BEJAK (19B3)). This is easy
te understand simce the conductien resitance tends to zero while the
temperature gradients is constast, when one moves towards the tip.
This poses & difficulty for the sumerical soluticn because there i# no
grid independant solution for this case since, a8 the grid is refined,
the oumerical solution tends te reproduce the amalyticsl results. In
this case, the heat caleulated mumerically at the tip will be larger
and larger, ioflusncing the average heat transfec coefficient &t the
walls considersbly. Im conclusion, keeping this simgulacity in the
boundary conditions there is oo way te obtain & grid ipdependent
solution for the problem.

To awvoid this numerical probles POULIKAKOS and BEJAN (1581)
pimply npeglected the heat flux alomg 10 percent of the walls from the
tip. One understands that this is not the proper way to by-pass the
problem  because the heat flux seglected influences considersbly the
aversge beat flux. In this paper an average Cemperature is  assused
for the tip snd a limear temperature profile is adopted, a3 asketched
im Fig. 5. This strategy removes the singularity at the tip and

pimulates more reslistically the experiment.
PHYSICAL FROPENTIES, GEOMETRIC AND FLOW PARAMETERS

The conservation equations are written im & non dimensionless
form and the physical properties, to obtain the Rayleigh smd Fraodtl

pumbers, are calculated using an aversge temperature of 3J0OK. The

waluss of the properties employed for the nuserical experipents Afe
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K =0,0263 W/ek ; ¥ =l,846E-05 kg/ms ; EP =1007 Wkg T w Fr=0.707

aod they correspond to s temperature of 300 K.
The Grashof pumber is evaluated according to

Gr = gBeosy(T, - 1L g (1)
with
2
g L (&)
{TE - Ic}

The heat trsosfer coefficient will be reported wusing Cthe

egquivalent conductivity parsmeter defined an

q
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whers § is the sverage heat flux and ur_mi- the average hast flux for
Ea=0.
The Musselt number to be compared with the experimental one is

dafined as
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Te conclude the presentation of the relevent parsseters Table I1
brings the geometric relations used for the experimental messuresents

and the numerical celculations.
NUMERICAL RESULTE

The trisngular domain was discretized using boundary-fitted
coordinates as shown im Fig. 3, where 24 x 24 fipite volumes are used.
This grid size was established after carrying out a grid resolution
study. It is important to observe the high nooortbogonal region of the
grid near the wmiddle of the insulated wall.

To start the comparisons, Fig. & shows the local beat flux aleng
the bot and cold walls,incloding FLACE'S results. 1t is to be noted
that the origim of the axis for the cold and bot wall are different,
according to Fig. 1.

Inspectiog Fig. &, drawing attention to the cold wall, one sees
that the experimental heat flux shows its maximum of about 330 Wi
sesr  %/Le=0, decreasing contimuosly to =zero, while the nouserical
results show its maxisum of about 500 W/e' at x‘.‘fl.-l:l.ll. then decreasing
continuosly to zero, sxhibiting the same behavicur as the experimental
results.

Inspecting oow the curve for the hot wall one reslizes again
that the mumerical heat flux doss oot show its maximun at x/L=0, as
does the experimental ooe. In the numerical case the marimun occurs at
x/l= 0.07. The physical situation which occurs at the left corner of
the trisogulsr cavity is similar to that at tbe left bottom corner of
& square cavity, For the latter case the saximum Nusselt oumber is
locsted st about 10 percent from the left cormer, asccording VAHL
DAVIS amd JONES (1983), The findings for the triangular cavity are the
same, a5 expected.

Continuing to discuss the results, its important to present the
linear profiles sdopted in the top corner of the cavity for avoiding

the blow wp of the hest flux st thet position. Sicce the hot wall was
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apsused to be st S99C and the cold wall at 19C, the point at the
corner wvas takan to be st 239C. Then, a lipear profile was assumed for
the oext 5 elements along the hot and cold wall, as shown in Fig. 5.

5till paying attentiom to Fig. &, one can see that the msasured
beat flux at the top corner is practicelly the same for the hot and
cold wall. For the oumerical results this does not bappens, being the
beat flux oear the corcer, st the cold wall, 2.8 times greater than at
the hot wall. Mumerically this relation can oot be umnity, dus to the
imposed temperature profile at the walls. Of course, to impose &
temparature profile alomg a portion of the walls (7 percent im this
case) is ot the apropriste way to trest this boundary comtitiom. It
is better than to keep & singular point, but the proper way is to
solve the coojugste cooduction/coovectiom problem, iowelving the
wvalle and tha fluid.

Te cooclude the analysis of Fig. & the comparison between the
average heat flux at the walls is carried out. Using the measured
total heat tramsferred at the walls, and the area of walls, one finds
ih.;'“ﬂ.l Wim'and i'r_'-l-l'!i.‘.l' Wim! In the oumerical case the sversg best
flax st the cold and bot walls are exsctly the same, dus to the
conservation principles implied in the algebraic equations, and equal
te 3"=151.2 W/ial

As @& global conclusion one could say that the local heat fluxes
axhibit the same trends with higher saxisus for the oumerical results.
The average heat flux, by its turm, is in very good agreesent with the
experimental measurements.

To contioue the comparisons Table II1I shows the aversge Nusselt
oumber calculsted acecording to Eq.(9) with the experimental walues
taken from Fig. 9 of FLACE et alli(1979). As can be extracted from the
table for 8=30 and 120 the results are in good agresment, showving &
saxisun difference of 4.1 percent. For B=60 cos has only ooe results
to compare and the agreement is not good, showing a difference of L16.7
percent. Up till now no resson for this difference has been detected.

In Fig. 6 it is shown the equivalent conductivity as defined by
Eq.(5), for &=60 , 90 and 120 , as a function of the Rayleigh oumber.
As can be seen the heat is transferced by pure conduction up to Ra=10:
This figore depicts an incresasing equivalent conductivity for an
increasing 6. This means that the oatural recirculstiog flow caused by

the bucysoce Fforce is wore effective for larger angles tham for

smaller ones. Io fact, for S2=&0 the heat tramsferred by cooduction is
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about 4 times greater than for 2120 apd so, the recirculating flow

is less importaot, relatively to pure conduction, for =60 than for
B=120. This does not means, however, that the heat transfer
characteristics for larger are better tham for smaller ones. In
fact, if the best transfer characteristics are put io terms of the
Hosselt oumbsr, &8 defined io Eq.(9), for a constant Rayleigh number,
the Nusselt comber decreases with iocreasing 9. As the Rayleigh number
increases; for the three sogles studied, the influence of the geometry
decreases, wsince the strong recirculating flow plays a more important
role inm the heat tramsfer than the geometry does. The Nusselt number
is oot sbown here, but it cam be sasily cbtaioed with the help of Fig.
6 and Table III.

Te illustrate a bit more the phenomsnon, Figs. 7 an B depict the
temparature aod the velocity profiles alomg the wertical line passing
through the top corper, while Fig. 9 shows the velocity wector plot

for 6=90 and Ra=1.96 10°,
CONCLUDING REMARLS

The oatural comvection probles was solved usiog a boundary-fitted
coordinate wethod and the results compared with the experimental work
of FLACE et alli(1979). The oumerical results agreed well with the
Eaasuremsnts when the average RNusselt ousber are compared.

The teotative of simulaticg the experimental work required the
aspunption of & tesperature profile oear the top cormer of the cavity.
The profile asdopted resulted im local beat fluxes at the corner in
considerable discrepancy with the sxperimental results. Despite the
good agresment encountered in global basis, & better way to treat the
beat traosfer ot the cormer needs to be done im order to sisulate
more reslistically the experimect. A step abesd to resch this goal
would be to solve the conjugate problem imvolving cooductiza iz the
wall and comvection in the fluid. This is presently being conducted by

the suthors.

ROMENCLATURE
¥ cartesian coordinate system
En general curvilinear coordinate systes
J jacobian of the tramsfomation
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v cartesian velocity components
T temperature

P pressure

a, B,y componentes of the metric tensor

C1.02,C3 tranformed difusivity for #

time

general scalar (u,v,T,...}
squivalent comductivity, Eq.(5)
Grashof number, Eq.(3)

Rayleigh oumber (Gr Pr)

Busselt oumber, Eq.(%)

local heat flux; W/e®

sverage heat transfer coefficient
thermal conductivity evaluated at 'J.'-
avVerage LempETALUTE; D.sl‘[h . ‘I: )
normal

sogle in Fig. 2 and Egq.(3)
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TABLE 1- #, §, and T expressions

L] ] 1 T u v
Ll
P o [} - =
| o SRRk Cae e
0 =4 |
] a [geB(T=T) /2
) 0 oo o ov

TAELE I1=- CGeometric parameters

8 | v Lim) wWimi | wied |
0% 0¥ 0.0879 0.0879 0.0762
20? L 0.1078 0.1524 0.0762
un'i'l 607 0.1524 0.2637 | 0.0762

TABLE I11- Nusselt number. Mumerical z Experimental®

p 221 0 la.snzs | 6.3888 | 3.96e8 | 5.2186 | 2.7526 | 3.5566
14.71 | 15.82
607 | 3,61
19.0 | .
_ | 12.91 | 13.97
507 | 2.1 |
] 1.3 | s : g
: | | j 10.43 11.26
1207 1.58 | + - -
| : | | 1.0 | 1.0 |*




o
-2 FEOLE WaLL S eDT e
1 it B — §ed e
% bR = e
Al FLalh mi i LW T L]
g ey
i ™ w
SRR Sl
£ :
- s
Fig. 1- Problem geometry Fig. 5- Temperature profile at the
tip a Lo
*aa 7] - % ) ] - ' - - o o'
L L
Fig. &= Local best fluxes Fig. &~ Equivalent conductivity
o
L u[ ("I I -II
&
- i |
- L |'
-
fts e [
-
AT T 4 & = ]
L e
Fig. I- Schemstic of Flack's sxpsrimemt . .“l_
ar_ aw =3 -'__'“ 1] ™ ar . - - =
o

Fig. 7= Tempersture profile; 5=90* Fig. 8- Velocity profiles; &=80°
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Fig. 3= Domain discretization; #=90*
Fig. %= Velocity vector plot; 2=90°, Ra= 1.9 10®
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