
 

 

Finite Volume Methods with Multi-Point Flux Approximation with 

Unstructured Grids for Diffusion Problems 

J. Ambrusa, C. R. Maliskab, F. S. V. Hurtadoc A. F. C. da Silvad  

SINMEC - Computational Fluid Dynamics Lab 

Mechanical Engineering Department 

Federal University of Santa Catarina 

88030-150 – Florianópolis – SC - Brazil 

a
jaime@esss.com.br, 

b
maliska@sinmec.ufsc.br, 

c
fernando@sinmec.ufsc.br, 

d
afabio@sinmec.ufsc.br 

Keywords: Finite Volume, Flux Approximation, Multi-Point Approximation, Unstructured Grids, 
Elliptic Equations, Monotonicity, Diffusion Operator, EbFVM  

 

Abstract. This paper addresses the key issue of calculating fluxes at the control-volume interfaces 

when finite-volumes are employed for the solution of partial differential equations. This calculation 

becomes even more significant when unstructured grids are used, since the flux approximation 

involving only two grid points is no longer correct. Two finite volume methods with the ability in 

dealing with unstructured grids, the EbFVM-Element-based Finite Volume Method and the MPFA-

Multi-Point Flux Approximation are presented, pointing out the way the fluxes are numerically 

evaluated. The methods are applied to a porous media flow with a full permeability tensors and non-

orthogonal grids and the results compared with analytical solutions. The results can be extended to 

any diffusion operator, like heat and mass diffusion, in anisotropic media. 

Introduction 

Finite Volume Methods have the important characteristic of being conservative at control volume 

level, ensuring that the discrete equations tend to the exact partial differential equations 

when the grid is refined at the point level.  This is strongly recommended, since it guarantees that all 

physical quantities, like mass, momentum, energy, mass components etc, are conserved, and no 

sinks and/or sources of the property are numerically generated [1][2][3]. In those methods, to obtain 

the approximate equations, it is required the calculation of the diffusion fluxes at the interfaces of 

the control volumes. This calculation is of utmost importance since it influences the monotonicity 

and stability of the numerical scheme. For low degrees of anisotropy (of the media and of the grid) it 

may be attractive to keep a two-point approximation, for the sake of simplicity and stability, and to 

cope with the errors in the flux calculation. However, for developing more general algorithms, the 

two-point approximation does not suffice, and more grid points (multiple points) need to be 

involved to obtain a correct flux determination. 

Problem Formulation. Single Phase Flow in Porous Media   

The analysis of the EbFVM and MPFA methods is realized by solving a single phase flow in porous 

media. This problem contains all the ingredients for the analysis, especially the calculation of the 

normal gradient at the integration points, the key question under consideration in this paper.    

Considering a single phase flow of an incompressible fluid in a porous media, the governing 

equations are the mass conservation equation, 
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and the Darcy’s equation 
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 resulting in the following elliptic equation for pressure 
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The mass flux calculation at each integration point, (see Fig.1), the key issue in a finite volume 

method, can be calculated by  
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where 
iS∆

�

is the normal vector at the integration point. How to calculate the pressure gradient in Eq. 

(4) with the EbFVM and MPFA methods is now addressed. It should be recalled that there are 

methods which uses the two grid points approach to calculate the principal flux adding a correction 

to account for anisotropy and grid nonorthogonality. These are not considered here.  

Finite Volume Methods 

EbFVM. The Element-based Finite Volume Method was introduced in the field of fluid mechanics 

and heat transfer in the 80’s [4] using triangular meshes. Improvements were made on co-located 

grids in order to avoid the pressure coupling of this arrangement [5]. Nowadays, EbFVM is largely 

employed for fluid flow simulations using Navier-Stokes equation and is gaining attention for 

simulating petroleum reservoir flows [6,7,8]. Fig. 1 depicts the elements and the control-volume 

constructed with the sub-elements.  

 

 

 

 

 
 Fig. 1 EbFVM- Element and control volume (CV)                Fig. 2 MPFA–Interaction region and CV 

 

EbFVM is a cell-vertex method which borrows from the FEM all the geometrical identities and 

the way to interpolate inside the domain. The approximate equations, in the other hand, are obtained 

via a finite volume balance of the property. The assemble procedure is also very much like as done 

in FEM, sweeping element-by-element, since all required information is calculated for the element. 

The discretized conservation equation for a control volume is obtained by summing up all fluxes at 

the interfaces of the sub-elements which forms the control volume, as seen in Fig.1. Considering a 

quadrilateral control volume, it can be seen that there are eight fluxes entering the approximate 

equation, against four in the case of quadrilateral grids for a cell-center method. The shape functions 

for a quadrilateral element are given by 
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Since in our problem the variable of interest is the pressure p , it can be interpolated inside the 

element using shape functions as 
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with the corresponding gradient calculated by 
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Defining the derivative matrix as 
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and the jacobian matrix by 
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one obtains 
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where the subscript “e” indicates that the gradient is evaluated at the element. Using now Eq. (4) the 

fluxes can be calculated. The four fluxes belonging to an element are determined solely as a 

function of the four node points which defines the element. The option of storing all media 

properties at the element, instead of at the control volume, avoids a discontinuity in the media 

properties at the location where the flux needed to be calculated.  In 2D, when the eight fluxes are 

summed-up, to construct the approximation equation, nine grid points will be involved, being the 

EbFVM a multi-point flux approximation scheme too. 

MPFA. This cell-center method also uses two entities, the control volume and an interaction region 

for calculating the fluxes, as depicted in Fig. 2.  While in the EbFVM the pressure distribution 

inside the element is represented by a bi-linear function, given by Eq. (6), in the MPFA it is 

constructed an expression for the pressure gradient using linear approximations inside the 

interaction region. Consider Fig. 2(b), where an interaction region is shown. The pressure at point 1  

and 2  can be written as  

 

    
1 2 1p p r p 

  = + ⋅∇
�

             (11) 

 

    
2 2 2p p r p 

  = + ⋅∇
�

           (12) 

 



 
 

 

It is possible to combine the above expressions resulting in 
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in which 
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This pressure gradient holds for the triangular bottom right corner of the interaction region, but it 

is extrapolated for calculating the flux at the surface which joins point 1  and the center of the 

region, as     
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     Defining  
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the flow rate can be calculated by 
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    It must be noted that the variables jkp  are not known. They can be determined by applying the 

mass flow continuity between regions. Observe in Fig. 2(a) that it is possible to compute the mass 

flux at each interface using the two different gradients from the neighboring triangular regions 

which shares the same interface. Equating two-by-two, one obtains  
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     Solving the above system of equations one obtain the jkp  pressures and the four fluxes can be 

calculated. The original paper on the MPFA method calculates transmissibility for this system too. 

The relation between transmissibility and the coefficients involving geometrical and physical 

properties is discussed in details in [9,10]. 

Results.  

     Several comparisons were made [11] among these two versatile methods, but due to the lack of 

space only few will be presented here. To evaluate the accuracy in calculating the pressure 

gradients, two single phase flow problems in a porous media are solved for two anisotropic 



 
 

 

situations, homogeneous and heterogeneous, using analytical solutions for comparison. The 

equation for both problems is   

( )K p q∇⋅ − ⋅∇ =            (19) 

      

     For the first problem, solved in the grid shown in Fig. 3, with a permeability tensor given by 

2xx yyk k= =  and  1xy yxk k= = , and the source term by 2 22(1 ) xyq x y xy e= + + + , the solution is 
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    It can be seen in Fig. 4 that both methods show a convergence behavior of the second order when 

the grid is refined (2
nd
 order reference curve), with the MPFA presenting slightly better results. For 

the second problem (heterogeneous media) one has, for a square domain, 1xx yyk k= = , 0xy yxk k= =   

for the left part of the domain, and 20xx yyk k= = , 10xy yxk k= =  for the right part. The source term 

and the solution are 
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          Fig. 3 Grid for the homogeneous problem                             Fig. 4 Error: Homogeneous problem 

       

 

          Fig. 5 Grid for the heterogeneous problem                           Fig. 6 Error: Heterogeneous problem 

      

    The final problem considers briefly the monotonicity of the solution. The same problem, now 

with a punctual source term in the center of the domain with 250.75xxk = , 750.25yyk =  and 

432,58yxk =  is solved. Figs. 7 and 8 show, respectively, the graphical solution for the MPFA and 

EbFVM methods. The pictures on the right paint in blue the elements where at least there is one of 

its four nodes with a value below zero, what demonstrates that monotonicity was not obeyed in both 

methods. The EbFVM presented smaller maximum values, but a solution with a higher degree of 

smoothness, compared with the oscillations presented by the MPFA method.   



 
 

 

  

 

    

 

        Fig. 7 Monotonicity - MPFA solution                   Fig. 8 Monotonicity - EbFVM Solution 

Summary  

The outcome of this study shows that EbFVM and MPFA are two multi-point flux approximation 

methods with strong capabilities for dealing with unstructured grids, but both are not 

unconditionally monotonic when dealing with very large gradients, a common problem for 

numerical schemes. Further comparisons among these methods can be found in [11]. 
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