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SUMMARY

The approximate gactonization [AF] scheme is Langefy employed in the methods in

wihich the equation systems ane sofved simultaneousfy,

Warming method.

Like the weff knouw Beam and

The advantage of the AF prwcedure s that fwo and three dimensional

problems can be sofved as a sequence of one dimensional problemd.. The extension of
the AF scheme, applied to the conventional segregated methods, nealized in this work,
demons trates that the procedune wonks well fon small time sieps. Fon farge Lime sieps
the procedure can be applied only Lo the momentum conservation equationd.

LNTRODUCTION

The numerical prediction of fluid flow and heat
transfer phenomena normally leads to the solution of
linear systems of algebraic equations. When the
discrecization 1is done wusing a structured grid the
resulting matrix possesses a well defined structure.
Using the finite volume approach. the matrices have,
in problems defined in simply connected domains or
without repetitive boundary conditions, a number of
non zero diagonals equals to: 1) five, in 2D problems
employing a orthogonal discretization; 11) nine, in ID
problems with nonorthogonal discretization; 1ii)
seven, 4in 3D problems with orthogonal discretization
and 1v) nine in 3D problems with a nonorthogonal
discretization. These nusbers increases if high order
schemes are used to evaluate the convective and
diffusive terms at the interfaces of the elemental

control wvolume and decreases if some terms are
explicitly evaluated, that is, they are added to the
independent wvector. In real problems when Cthe

discretization needs to be very fine the direct
solutions of these equation systems 1s unfeasible.

In the methodologies which follow the procedure
outlined in [1], the solution of the linear system of
equations 1s generally done using iterative methods.
These methods can be classified as implicic or semi-
implicit, depending on the number of terms of the
matrix which are removed from the matrix coefficients
and introduced Iin the independent vector. In these
methodologies, since the linear systems originated
from each conservation principle are solved im a
segregated manner, other iterative levels are needed
for updating the coefficlents and the source terms.

In the other hand, in the numerical schemes
gimilar to the one proposed by Beam and Warming [2].
where the eguations are linearized using a Newton-
Raphson procedure and are solved simultaneocusly, the
only source of iteration is related to the solution of
the linear system involved. It is wise to point out
that, in these schemes, to each element in a matrix
originated from a segregated approach corresponds to a
4%4 or 5%5 sub-matrix, depending wether the problem is
2D or 3D. This difficulety, however, 1s partially
removed by the use of the approximate factorization
process, where 2D and 3D problems are solved as a
sequence of one dimensional ones. In this manner the
matrices assume & block tridiagonal structure, to
which efficlent solvers can be applied [3] making the
process, as a4 whole, non iterative.

The main goal of the present work is che
development of an approximate factorization scheme
applied to the solution of linear systems originated
from methods which uses the segregated approach.

In the sclution of compressible flows the
partial differential equations are linearized
expanding the non linear terms about a known solution
in time. The procedure is analogous to the Newton-
Raphson method applied for the solution of non linear
algebraic ecuations. Due to this linearization process
the governing differential equations need to be solved
simultaneously.

Consider, as an example, the 2D compressible
flow of an inviscid fluid. The governing equations
written in delta form [2][3], after the linearization

process and tcime discrecization assume the following
form

a a
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where [A] and [B] are the jacoblan matrices originated
from the linearization process. Al is the time
variation of the vector U, wvhose components are @, pu,
pv and E;, where E; is the total energy by volume.
After the spatial discretization of the derivatives,
Eq.(l) gives rise te a block pentadiagonal linear
system, where each block 1s a 4¥4 matrix. The solution
of this linear system is not trivial. Consider now the
Eq.(1) written in the form of a differential operator
applied to a unknown vector &, resulting

an 8B
[I+.M. a—“tﬁ]] Al = RHS (2)

Te avoid the solution of a block-pentadiagonal
matrix, the differential operator is split in the
product of two onedimensional operators, resulting im

Ak fil:]
[l+“ﬁ][l+“a?]m‘m5 (3)

If one defines an auxiliary vector w* as

] &8
= &
AU [Ifﬂ.tay]ﬂu (&)
and substitutes Eq.(4) in Eq.(3), ﬁu' can be found

through the solution of a bleock tridiagonal matrix.
Since AU™ is known, the AU wector can be found in the
same manner using Eq.(4). In this way a 2D problem was
solved through a solution of two 1D probleas.



Obviously, the product of one-dimensional
operators does not reproduce the original 2D operator,

introducing an error iIin the AU vector. This error,
however, 1is of order At?, which is the same order of
the errore introduced in the time discretization of

the governing differential equations.
approximate
order of
solution,

Therefore, the
factorization process does not alter the
the approximation errors of the whole
and the scheme can be considered as non-
iterative. Recall that when the steady state is
reached, the RHS of Eq.(2) wvanishes and the only
distribution of U which produces 4U equal to zero is
the distribution which satisfiles the steady part cf
the discretized differential equations. Therefore, if
the procedure converges, the solution obtained will be
the correct solution for the steady state.
The aspproximate factorization scheme 1is widely
used in the solution of compressible flows where the

governing equations are solved sisultanecusly. The
observed drawback of the process is the slow
convergence when At Iincreases, specially in D

problems [4&4].

In the segregated formulation wusing finice-
volume methods the differential equations are
represented, for a 2D problem for example, as
8 8 8 a'¢ , a9
—i{pg) + —l(pug) + —(pvg) = . r? — ol (5)
at ax a8y ax dy

where & plays the role of o, u, v, T, eté, The

appearence of the diffusive terms, not included when
the simultaneously formulation was described, and the
exclusion of source terms are immaterial for the
purpose of what follows. Eq.(5) discretized using
finite volume method results in

'p‘F g ‘:‘E " ‘:.’u = ":;'u = “:‘*5 =b (6)

or, in matrix form, as
[Al{¢} = {b} (n
As already pointed out, the direct solution of

Eq.(7) 18 unfeasible. So, iterative procedures are
employed, like the polnt-by-point Jacobi, Gauss-Seidel
and S50R methods or the line-by=line methods, which
requires the aplication of the TDMA [1] solver im
lines and columns. Strongly implicic techniques are
also used, like SIP [5], M5I [6] and the 5IP version
proposed in [7]. The point=-by-point and line-by-line
techniques, although easy in programing and efficlent
in coarse meshes are too time consuming in refined
grids. Besides that, because of the explicit nature of
the procedures, they regquire the positivicty of the
coefficients for achieving convergence [1][8]. This
requirement 1s wvery strong since, for assuring the
positivity of the coefficients, it is necessary to
introduce some form of upwinding in the evaluation of
the fluxes at the Interfaces, with the consequent
degradation "of the solution due to numerical
diffusion. One of the characteristica of the
methodologies just mentiomed i1is the capabilicy of
eliminating high frequency errors the solution
during the iterative procedure. The use of block
correction schemes or multl-grid techniques speeds up
the convergence process because they actuate in the
damping of low frequency errors [9]. In the other
hand, the atrongly implicit procedures, based on the
LU  decumposition of the wmatrix of coefficients,
although iceracive, posSsSess a high rate of
convergence.

in

If the exact solution of Eq.(7) is obtained, the
errors in the distribution during the transient will
be due solely to the spatial and temporal
discretization. If the solution is iterative, another
error is introduced depending on the truncation of the
iterative cycles (convergence criterion). Even when
the interest lies in the steady state solution if
Eq.(7) is mnot solved subjected to a very strong
convergence criterion, the resulting steady state
solution will be wrong. It is well known the
irrealistic solutions obtained when only few Jacobl
iterations are performed.

Recently [B] the authors developed a segregated
formulation in delta form. The main characteristic of
this formulation 4is that the dependent variables are

the time variations of the conserved properties. In
delta form Eq.(6) assumes the following form
a bdp - n;irE - n:ﬂiu - nLa;H - n;&is = pis  (8)
where
= t+at 4t (9)
Details of the development and a few tests can

be found in [B]. By now it suffices to say that cthe
term RHS 1is evaluated uwsing known variables from the

previous time level and it corresponds to the
discretization of the steady state part of the
governing differential equation, Eq.(5). Therefore,
when the steady state is reached the RHS and, of
course, A4 vanish.
SECRECATED FINITE VOLUME METHOD

The solution of Eq.(B) can be obtained by the
same methods employed 1in the solution of Eg.(6).

However, the delta form has the advantage that when
the steady state is reached the RHS is zero, implying
in a zero time variation for ¢, even 1f approximate

methods are used in the solution of Eq.(B). Therefore,
the basic idea 18, following what is done in the
simultaneous solution methods, to develop a direct
method for the solution of Eq.(B) whose errors
introduced in the transient solutlons be acceptable.
To this end, conalder Eq.(8) divided by aps resulting

Ao - n B¢ - a A, - 284, - B 8¢ = RHS (1o}

For simplicity, consider the case in which the
domain have been discretized by a 3X3 grid, without
the use of fictitious points, shown in Fig.l.
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Fig. 1 A 3X3 grid.

The system of equations given by Eq.(10) can be
represented by the following equation

[Al{ag} = {RHS} (11}

and the matrix [A] assumes the form



1
(4] = a, a, (12)

An approximate factorization process to this
problem can be established if one replaces the
original problem; Eq.{ll); by the problem

(2 [.ny] {a¢} = {RHS} (13)
where
n -
o 1° s,
.“ ; 1 a
(a,] = 17 (14)
a, 1
1 a,
8,1 a,
a, l__
and
i a ]
1 & a,
1 a,
a 1 a
(A) = ®a, 1 "a, (15)
iy 1 ag
8, 1
a, 1
a, l_

If one defines {A4"} by

8¢’} = () (89) (16)
Eq.(13) results

(A (86) = (i) an

Eq.(17) 1is a one-dimensional problem and can be
easily solved through a TDMA-like procedure. In the
sequence, Eq.(lo) allows the calculation of {a¢} 11 a
similar fashion. Obviously, the approvirate
factorization procedure given by Eq.(13) dois not
reproduce the original problem given by Eg.(Il). HNew
terms, involving the product of two of the coefic.ents
of cthe original system of equations, are preser. and
are analogous to that which appears In Eq.(% in
excess to Eq.(2), related to the simultaneous scheme.
Therefore, the problem actually solved by the
aproximate factorization scheme is

Mp - a0 - le, - e T - Tl L P
- ‘Baen‘SE = nn‘H#.HH o nsluh'SH = RHS (18)
SOME NUMERICAL EXPERIMENTS

As a test, the well known problem of the lid-
driven cavity was chosen. The solution was obtained
for several wvalues of the dimensionless time step
defined as At«Lfuya)l). with Reynolds number equal to
1000. The cavity was discretized using a L1010 grid
uniformely spaced, and the SIMPLEC [10] method was

used to deal with the pressure-velocity coupling. The
solution was considered converged when

u (19)

for ¢ equal to u and v, 1in every cell of the domain.
For the purpose of the test, a problem involving only
a scalar field, like a conduction problem, could be
solved. However, the chosen problem 1is far more
complex, because it is a nonlinear problem with a
strong coupling between the equations. Table 1 shows
the number of iterations and the CPU effort in seconds
to reach convergence, as a function of the dimension-
less time step for three different situations, as 1)
the approximate factorization is mot applied; 14) it
is . applied in the solution of the momentum equations,
and iii) it is applied to all three linear systems,
comprising momentum and mass conservation. When the
approximate factorization process is not applied the
equations are solved using the MSI [6] procedure. For
the evaluation of ¢ at the interfaces of the control
volumes the UDS scheme [1] was applied.

Table 1. Performance of the AF process with UDS.

% MS1 AF in u,v | AF in u,v,P
At LT CPU IT CPU IT CPru
0.2 | 266 15.1 268 11.9 | 270 9.7
0.4 148 8.6 151 6.9 | 156 5.7
0.6 107 6.4 111 5.2 120 4.6
0.8 a7 5.2 92 b.4 103 4.0
1.0 75 4.5 80 3.9 | 101 3.9
1.2 68 4.2 T4 3.6 106 4.0
1.4 64 4.0 10 3.5 114 4.3
1.6 62 3.8 67 3.3 120 4.5
1.8 6l 3.6 b 3.2 129 4.8
2.0 61 3.6 1] 3.1 138 S.l

The results obtained demonstrate the savings in
the computer effort when the approximate factorization
is applied in the solution of the momentum equations,
although the number of iterations is a liccle higher.
The results of the third column, however, show that
for At* higher tham 1.2 the application of the
factorization process does not help in the convergence
rate. Such results were expected sinc~ the errors
introduced in the solution wvaries wi h At? and the
errors are speclally damaging when relat .d to the mass
conservation equation.

Table 2 shows the results of a sve. more severe
test where the UDS scheme 1s r:pliced by the CDS
scheme. Because the CDS scheme is non d ssipative the
convergence rate s =slower even folving the linear
systems using M5I. The stars in tle *able indicace
that the convergence was rot reuched in 1000
iterations. The results shown thit tor small values of
At™ the approximate factorization is always of
benefit. However, the globa' perfoimance 1is more
susceptible to the increase ¢f the tlie step., Such a
behaviour is easily explaincd. The coefficients LI
ap & ag in Eq.(10) obey the following equation

Bg +a, Ay +a, + M (ag B FH) =L (20)

where At 4is the time step and M, is the mass inside
the control volume. When the UDS scheme is applied che
coefficients are all positives, and of course, all of
them less than unity (and smaller as smaller the time
step is). Therefore, the additional terms originated
by the approximate factorization, resulting from
product of two coefficlents, are also small. By its
turn, 4in the CD5 scheme the coefficients can be
negative with absolute value larger than unity. In
this case the additional rterms are harmful to the
performance of the method for smaller At than are for
the UN5 scheme. It is important to point out that the
use of point-by-point and line=-by=line solvers would
bring the procedure to divergence due to the presence
of negative coefficients.



Table 2. Performance of the AF process with CDS.

- MST AF in uw,v | AF iu u,v,P
At | IT  CPU it CFU 1T CPU
0.2 549 30.7 | 549 24.2 | 571 20.1
0.4 1 313 17.7 | 313 14.0 | 364 12.9
0.6 | 236 13,4 | 236 10.7 | 317 11.3
0.8 202 11.6 | 201 9.2 | 314 11.2
1.0 187 10.7 | 183 8.4 | 509 17.8
l.2]| 182 10.5 | 175 7.9 * *
l.4 | 182 10.5| 180 7.8 -
l.6 | 187 10.6 | 578 23.8 * *
1.8 195 10.9 * * * N
2.0] 205 11.3 * n * L

In order to have more Iinformations about the
vehaviour of the AF procedure, few more tests were
conducted using the lid-driven cavity problem, where
the grid, the Reynolds number and the dimensionless
time step were changed. The outcome of the tests are
as follow. Keeping the same grid and the same Heynolds
nusber but reducing the dimensionless time step, the
performance of the AF procedure is superior of the MSI
irrespective of using UDS or CDS, confirming the
tendencies of Table | and 2. In these cases the number
of iterations necessary for convergence is pratically
the same for the three cases, requiring less CPU
effort for the AF since the time per iteration of the
AF scheme is smaller. This result was expected since
smaller ac® imply in smaller coefficients Bgs By, g
and ag according to Eq.(20).

If the grid is refined the wvalue of &t™ for
keeping the AF procedure advantageous reduces wheu
compared with the At* wvalues for the 10X10 grid,
regardless 1f the UDS or CDS is used. This result i
surprisingly since the grid refinement increases the
diffusive part of the coefficients, improving the
stability characteristice. Probably, due te the Ffact
that the grid refinement diminishes the quantity of
mass M ingide the control volumes, this would cause
larger’ coefficients, according cto Eq.(20). Despite
this fact, for small values of At*, the AF procedure
performs better than the MSI method. The wminimum CPU
effort is, however, obtained with the MSI using larger
time steps, and large enough to cause divergence of
the AF procedure.

Finally, tests realized with a 20X20 grid
indicated that the performance of the AF, when
compared with the M5I, is independent of the Reynolds
number. Using CDS the number of iterations for
convergence Iincreases with the Reynolds number, but
this behaviour is also present in the M5 and in the
AF for the two situations analyzed.

« The
golution of the linear systems of equations through
the AF procedure is an approximated process due to the
presence of the additional cterms shown in Eq. (18).
The influence of these terms can be reduced if in the
algebraic equation the partial cancellation of these
terms is realized before the solution is carried out,
Eq.(10) is then substituted by

l"\|:\\ = lua*E = nub‘u - an"ﬁ g nﬂ“*ﬁ L {ahaua'HE *
+ =
Ss%eiMsE * n My ¢ 83 8 ) = RES (21)
where @ is a relaxation parameter. In order to mantain
the pentadiagonal structure the § values in NE, NW, SE

and 5W are expressed as a function of & in P, E, W, N
and 5 by expressions like

=t % (22)

S5imilar procedure is also used in [6]. The use of this
procedure to the test case with Reynolds number equal
to 1000 and a 10X10 grid gives rise to good results
when the AF was applied in the solution of the

momentum equations. Even adopting the CDS scheme the
solution was always obtained with almost the same
nusber of iterations as when using MSI, but with 30Z
less computer effort for the whole range of At"
examined. Unfortunatelly the time step limitation
continued to restrict the application of the AF to the
solution of the mass conservation equation.

CLOSURE

The main goal of the present work was the
development of a non-iterative scheme using the
approximate factorization concept applied to
pentadiagonal systems 1in the segregated framework.
The tests carried out to 4illustrate the procedure
demonstrated that it performs better than the M51
scheme when solving the momentum equations employing
the UDS approximation. Still using the UDS
approximation but mnow solving the mass conservation
equation the performance deteriorates requiring
smaller time steps 1in order to converge faster than
the M5I. For the CDS approximation the time &steps
required are even more resctritive for the AF
procedure to show better performance. However, the
results obtained encourages further developments of
the procedure in the context of the segregated methods
of solution.

Finally, the analysis of the AF process proposed
in the present work when compared with the AF im the
context of simultaneous solution contributes for a
better understanding of the latter and its known
difficulty in handling transients with large time
steps.
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