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Abstract. This paper deals with numerical issues involved in the solution of partial 
differential equations in heterogeneous media. One important application in this class of 
problems is the simulation of petroleum reservoirs. For these simulations, three different 
methodologies are usually employed: finite element, classical finite volume and element-
based finite volume methods. The main contribution of the paper is to perform a comparison 
among the results given by these methods in some reference test problems, considering the 
accuracy of the fluxes evaluation and the techniques for averaging the physical properties at 
the control volume interfaces, since in these problems large heterogeneities are common. It is 
shown that the methods that do not require an average of the physical properties at the 
interfaces produce more accurate solutions. It is also proposed a new local grid refinement 
scheme that uses higher order interpolation functions. 
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1. INTRODUCTION 
 

The numerical simulation is undoubtedly a valuable tool in the petroleum industry. The 
information provided by numerical simulators can be a significant contribution on the 
evaluation process of a petroleum reservoir and, even more important, on the decision making 
process. The increasing importance of this kind of analysis tools has promoted an intense 
study of the different methodologies involved, especially in the academic community. 

There are many numerical methods that are commonly used in the development of 
commercial and academic simulators, and the differences among them are not always 
obvious. Thus, this paper begins presenting a general view about the principal numerical 
methods used in the reservoir simulation field, pointing out the conceptual similarities or 
differences among them. However, the aim of this work is not to conclude or express an 
opinion about which the better method is, because certainly there is no method that is efficient 
in all aspects. 

Some simple study cases are presented and the performance of different numerical 
methods is analyzed. The results obtained allow drawing some important conclusions about 
the influence of different aspects such boundary conditions, heterogeneities treatment, 
interpolation practices, etc. Finally, this work ends presenting a proposal about a local grid 
refinement technique, having as special feature the use of elements defined by a variable 
number of nodes. 
 
 
2. COMPARISON OF DIFFERENT  NUMERICAL  SCHEMES  IN  SOLVING THE  
       DISCRETE LAPLACE EQUATION  
 

In this section we discuss the numerical solution of simple problems involving the 
Laplace’s equation by different methods, trying to have indications about the accuracy of 
them. In fact, it is very difficult to compare methods developed in different areas of 
knowledge (Maliska 2003). For example, the Finite Differences Method (FDM) was always 
used in fluid flow, whereas the Finite Element Method (FEM) has been used, mainly, in 
structural problems. Physically, these problems are completely different. The Finite Volume 
Method (FVM), on the other hand, is a numerical method that results in equations where the 
conservation principle is assured. This is the reason why it has been successfully used for heat 
transfer and mass flow problems. Nevertheless, the Element-based Finite Volume Method 
(EbFVM) has recently appeared as a good option in the numerical simulation. It employs the 
ideas of Raw (1985) when developing the FIELD method for solving the Navier-Stokes 
equations. EbFVM is a better denomination for the method (Maliska, 2003), also known in 
the literature as Control Volume Finite Element Method (CVFEM) since it is a finite volume 
methodology which borrows from the finite element technique the concept of elements. 
CVFEM would erroneously suggest a finite element formulation that obeys the conservation 
principles at discrete level. It is important to stress again that we do not want to show here 
which of these methods is the best, since we believe that there is no method able to solve with 
the highest accuracy and flexibility all the physical situations in practical problems. So, this 
paper presents the results of applying different methods to solve simple problems in order to 
discuss some particular details involved in each method, like grid type used, averaging 
procedures, and so on, and finally how these can impact the results.  

Figure 1 shows that all methods cited before can be considered as weighted residual 
methods. This figure summarizes the task of any numerical technique, namely, to transform a 
partial differential equation in a system of n linear algebraic equation with n unknowns, one 
for each node. A weighted residual formulation can be written as 



( ) 0
V

=∫ WdVφL              (1) 

 
where V is the volume, W is the weighting function and φ  the approximation for the unknown 
variables. If W is the unit in a control volume and zero elsewhere, and the equation is in its 
conservative form, the resulting methods are FVM or EbFVM, depending on the type of 
interpolation function. If the weighting function is assumed as the Dirac delta function in a 
point, the resulting method is FDM, whereas if the W is assumed as the element shape 
functions, one obtains the FEM (of Galerkin type). Other observations and comparisons  
among these methods can be found in Banaszek (1995) and Maliska (2003). 
 
 

 
 

Figure 1- Differences among numerical methods (adapted from Banaszek, 1995) 
 
 

As already stated, it is difficult to find the most efficient and flexible numerical method 
for use in reservoir simulation because its performance depends on many features of the 
problem being considered. Nevertheless, we present in the next section some cases to study 
the differences among the methods in simple problems, showing the strengths and weaknesses 
of each one. Initially, problems with Dirichlet boundary conditions are presented, and the 
differences among the numerical methods are analyzed in homogeneous and heterogeneous 
cases. Following, simple problems of upscaling, involving Neumann boundary conditions are 
solved in two different cases of heterogeneities in the domain. This section ends with the 
comparison among results of different types of shape function in the EbFVM, for the 



heterogeneous case. Other details about these methods, like basic ideas and the main steps, 
can be found, for example, in Patankar (1980), Raw (1985), Cook et al. (1989) and 
Maliska(2003). 

 
 

2.1 Test cases with Dirichlet boundary conditions 
  
 Homogeneous case.  The problem analyzed is presented in Fig. 2a, where a square 
domain with sides length of 1 has pressure P=0 prescribed for all boundary surfaces, except 
for the top surface where P assumes a senoidal variation. In some points, which are called PA, 
PB, PC, and PD, are computed the values that are compared with the analytical solution given 
by 
 

 ( ) ( ) ( )
( )π
ππ

sinh
ysinhxsiny,xP =             (2) 

 
 Even though some points analyzed in this figure are symmetrical and, therefore, they 
present symmetrical errors, we maintain them because they will be used in the next example, 
which is asymmetrical.  
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Figure 2- (a) Dirichlet boundary conditions problem in a homogeneous case, and (b) 
values of absolute perceptual errors vs. level of refinement for different methods. 

 
 

Figure 2b presents the values of absolute perceptual errors vs. level of refinement for 
different methods. Numerical grid refinement is represented by the parameter r. The level of 
refinement for 2x2 grids, for example, is r=1, for 4x4 is r=2, and so on. We can see in Fig. 2b 
that the results of EbFVM are better than the other methods (FEM and FVM). In the 
homogeneous Dirichlet problems, the EbFVM presents the same accuracy (2nd order) 
throughout the domain. Results from other authors have shown that the EbFVM has 
truncation error smaller than the Galerkin FEM and FVM for Laplace’s equation in 
homogeneous case (Rozon, 1989; Banaszek, 1989).  



Heterogeneous case.  In this paper it is considered heterogeneous the domain that 
presents spatial variation of permeability and/or porosity. However, before presenting the 
problem itself, it is important to mention that in the EbFVM, the physical properties, like 
absolute permeability and porosity, are stored in the centre of the elements, unlike the other 
methods, even other CVFE methods, that store the physical properties in the control volumes 
centre (Verma & Aziz, 1997). Even though using this storage scheme for the properties, the 
principal variables calculated in the numerical model, like pressure and saturation, are still 
stored in the grid-nodes. Figure 3 compares the usual scheme of commercial simulators with 
the one proposed in Cordazzo (2002). 
  
 

 
 

Figure 3- Different ways to store the physical properties: (a) in the 
control volume centre (proposed by Verma & Aziz, 1997), and (b) in 

the elements centre (proposed by Cordazzo, 2002) 
 
 

The main advantage of the EbFVM is the fact that is only needed to deal with one grid 
(the elements), which is built using triangles and/or quadrilaterals. In the center of the 
elements it is stored the physical properties like absolute permeabilities, porosity, etc. It 
results in an easy procedure to build grids that represent the heterogeneities with more 
fidelity. From a practical point of view of the simulator users, this method only demands to 
“see” a grid of elements instead of dealing also with a grid of control volumes, as is needed 
with other methods. Moreover, due to the harmonic average process done in commercial 
simulators in order to estimate the internodal permeabilities, some simulation results, 
sometimes can have been obtained with an erroneous heterogeneous map. In the EbFVM, on 



the other hand, as the integration points are inside the elements, there is no need to make any 
average to calculate the permeabilities at the control volume interfaces. Thus, this implies in a 
errors source that has vanished in the numerical model. Figure 3b shows that in EbFVM, the 
control volumes are heterogeneous, instead of the elements as in other methods.  

In the homogeneous elements approach, however, the transient term of the partial 
differential equation should be rewritten. More details can be obtained in Cordazzo et al. 
(2003). There are at least two reasons why we are be able to say that employing a mean value 
of porosity is not so troublesome than using a mean value of permeability. First, the range of 
variation of permeabilities values is often greater than the range variation of porosity values in 
a field. Second, the permeability is a term appearing in Darcy law, while porosity is not. We 
should remember that the Darcy law is the momentum equation for a porous media. These 
reasons justify the use of a numerical method that employs an average porosity value instead 
of an average permeability value. 
 Having done those considerations, we can present now a second example. The geometry 
and Dirichlet boundary conditions are the same as in the previous problem, while is used a 
new permeability map that is shown in Figure 4a.  We intend to investigate the influence of 
heterogeneities on the results given by different methods for same grids and Dirichlet 
boundary conditions.  
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Figure 4- Figure 1- (a) Dirichlet boundary conditions problem in a heterogeneous case, and 

(b) values of absolute perceptual errors vs. level of refinement for different methods 
 
 
 
 The reference solution was calculated by FEM for r = 216, i.e. refining the original 4x4 
grid up to 512x512. Figure 4b presents the values of absolute perceptual errors vs. level of 
refinement for different methods. It is denoted by “EbFVM Cordazzo” the Element-based 
Finite Volume Method which stores the physical properties, like absolute permeability and 
porosity, in the centre of the elements, whereas “EbFVM Verma” is called the Element-based 
Finite Volume Method which stores the same physical properties in the centre of the control 
volumes (Verma & Aziz, 1997).  According to this figure, the errors in the points analyzed are 
almost of the same order for all methods, except for EbFVM Verma, which has the greater 
errors for all levels of refinement. 
 



2.2 Test cases with Neumann boundary conditions 
 

In this section we investigate the influence, even though only qualitatively, that the 
Neumann boundary conditions have on results. The two cases chosen here are similar 
problems of upscaling with different heterogeneity levels. Several authors have examined the 
performance of different numerical methods on the computation of the effective permeability 
in coarse and refined grids for some examples of heterogeneous media (Romeu & Noetinger, 
1995; Ribeiro & Romeu, 1997; Renard et al., 2000). The most general and accurate technique 
is calculating numerically the equivalent conductivity of a heterogeneous media by solving 
the Laplace’s equation. This solution is biased when the grid is not over-discretized due to 
truncation errors, errors in averaging the properties, among others. The simpler case analyzed 
is the 2D chess-board given in Fig. 5a, where the domain is subjected to no-flow boundary 
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Figure 5- 2D chess-board problem: (a) boundary conditions and permeability map used to 

compute the effective permeability in a grid without refinement (r=1), and  (b) in a grid with 
two levels of refinement (r=2); (c) values of keq computed by different methods as a function 

of refinement; (d) values of absolute perceptual errors vs. level of refinement for different 
methods 



 
conditions along the perpendicular sides, P=1 at inlet, and P=0 at the outlet. The effective 
permeability in the x direction is given by QL/A, where Q is the total rate that enters or exits 
the system, A is the cross section area and L is the length shown in the Figure 5a. Therefore, if 
L = A = 1, the effective permeability is the total rate in the system that can be calculated from 
the numerical solution. The permeability map is shown also in the same figure. 

The equivalent permeability of a 2D infinite chess-board is the geometric mean of the 
local permeabilities (Matheron, 1967), that we will call the reference solution. Here the 
numerical grid refinement is still represented by the paramenter r. In Fig. 5a, for instance, the 
refinement level, r, is 1, whereas in Fig. 5b this parameter assumes value 2, and so on. Figure 
5c presents the results obtained by different numerical methods. We can conclude that both 
FEM and “EbFVM Cordazzo” overestimate the solution for keq, and both FVM and “EbFVM 
Verma” underestimate the solution for keq. However, all of these methods converge to the 
reference solution when the grid is sufficiently refined. Figure 5c shows how the three 
methods converge when the refinement ratio, r, increases. We can note that the methods that, 
besides having truncation errors, have the need to use harmonic average for calculating the 
permeabilities at the control volume interfaces, like FVM and “EbFVM Verma”, the solutions 
are always underestimated. The other methods, FEM and “EbFVM Cordazzo”, showed 
solutions overestimated, but according to Fig. 5d with smaller errors. 

Ribeiro & Romeu (1997) have examined the performance of some numerical methods on 
the computation of the effective permeability in coarse and refined grids for another example 
of heterogeneous media. They solved the problem depicted in Figure 6a, where the domain is 
subjected to the same boundary conditions as the previous problem, but with a new 
permeability map presented in that figure. 

The reference solution (keq = 37.71) was calculated by Ribeiro & Romeu (1997) refining 
the original 4x4 grid up to 700x700. The results obtained here are shown in Fig. 6c, where we 
can note the same tendency as the previous problem, which is both FE and “EbFVM 
Cordazzo” overestimating the solution for keq, and both FVM and “EbFVM Verma” 
underestimating the solution for keq. But now, the “EbFVM Verma” has presented much 
worse results, as we can see in Fig. 6d. 

Therefore, the greater accuracy of the EbFVM solution in steady-state Dirichlet problems 
is not achieved in steady-state Neumann problems. Actually, for the problems considered here 
with specified boundary fluxes, the performances of the EbFVM that stores the physical 
properties in the centre of the elements and the Galerkin FEM formulations are comparable. 
Other examples corroborating this feature have already been showed in the literature 
(Banaszek, 1989). On the other hand, both the EbFVM that stores the physical properties in 
the centre of the control-volumes, and the FVM have not presented so good results. The main 
reason seems to be the averaging done in the internodal permeabilities. Although, as they are 
only preliminary results, it is important to study even more the influence of averaging 
properties in the simulation results, mainly in problems involving saturation. 

 
2.3 Comparison among different shape functions in the EbFVM 
 
 In this section, the solutions of the EbFVM, which stores the physical properties in the 
centre of the elements, using different shape functions in the upscaling problem depicted in 
Fig. 5 are compared. The comparison is done among cases involving triangular elements with 
linear shape functions, Fig. 7a, quadrilateral elements with bi-linear shape functions, Fig. 7b, 
and quadrilateral elements with quadratic shape functions, Fig. 7c, for cases where the 
number of nodes is identical. 
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Figure 6- Second upscaling problem analyzed: (a) boundary conditions and permeability map 

used to compute the effective permeability in a grid without refinement (r=1), and  (b) in a 
grid with two levels of refinement (r=2); (c) values of keq computed by different methods as a 

function of refinement; (d) values of absolute perceptual errors vs. level of refinement for 
different methods 

 
 
 The elements presented in Fig. 7c are called higher-order elements, and they often give 
more accurate representations than the linear elements considered in Fig. 7a e 7b. At the same 
time, however, they are generally more expensive in terms of computational effort than the 
basic linear elements. Thus, the cost-effectiveness of various elements is often in dispute. 
Nevertheless, due to our purpose of using quadratic shape functions in a new local mesh 
refinement technique for EbFVM in the next section of this paper, the comparison done here 
is justified. The linear, bi-linear and quadratic shape functions used in the simulations can be 
obtained in Cook et al. (1989). 
 It is possible to show that for single-phase incompressible flow problems using linear 
triangles, Galerkin FEM and EbFVM formulations give the same discretized equations (Fung 
et al., 1991), but it does not occur when one deals with quadrilateral elements. Thus in Fig. 



7d, the results for FEM and EbFVM, for the grids presented in Fig. 7a, are identical and have 
been called here “Triangles FEM/EbFVM”. Note in the same figure that the results with 
greater accuracy are given by the EbFVM quadratic, as expected. This characteristic can be 
utilized with advantage in regions where we would desire to refine, because in these regions, 
very often, there is required a more accurate solution. The using of a higher order shape 
function can be a good choice. 
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Figure 7- Comparison among the solutions of EbFVM with different shape functions: (a) 

linear (triangular elements), (b) bi-linear (quadrilateral elements), and (c) quadratic 
(quadrilateral elements). The control volumes are shown in (d), (e) and (f). The values of keq 

computed by different methods as a function of refinement are presented in (g). 
 

  
 
3. A LOCAL MESH REFINEMENT TECHNIQUE FOR EbFVM  
 
 The local mesh refinement aims to save computational effort, since a simple grid is often 
not sufficient for supplying a good description of particularly areas, e.g. in the vicinity of the 
wells, boundaries and discontinuities. In this section, the basic ideas of a new local mesh 
refinement technique for EbFVM are presented.  



 This technique is based on the using of elements with variable numbers of nodes, which 
possess four through eight nodes. Figure 8a presents a grid composed by elements with 3 to 8 
nodes, and its related control-volumes. Note that in this approach, even though the global grid 
is still unstructured with triangular and quadrilateral elements, the refined elements are locally 
structured, because they are always quadrilateral elements divided uniformly in four elements. 
Besides, it is easy to understand that this solution is applicable only if the refinement is 1:2 for 
each direction, i.e. at any element face, one element may only have one or two neighboring 
elements on each side. This feature is found in other works also (Zeeuw, 1993; Heinemann & 
Brand, 1989). 
 
 

 
(a) 

 
 

 
(b) 

 
Figure 8- Grid composed by elements with variable numbers of nodes (left), and its control-

volumes related (right) in (a) a general case and (b) a vertical fault case.   
 

  
 In Fig. 8b is presented a vertical fault that is discretized using elements with variable 
numbers of nodes. Therefore, the same technique presented before for local refinement can be 
used successfully in the fault discretization. 
 Figure 9 shows an example of an eight-node element. When all eight nodes are present, 
the element is a Lagrange element, except for the central node presented in the previous 
section. When only four nodes are present, the element degenerates to the basic bilinear 
quadrilateral. Any of nodes 5 through 8, according to Figure 9, may be added or omitted. 



 

 
 

Figure 9- Eight-node element 
 
 

 The shape functions for midside-nodes 5 to 8 can be constructed as (Hughes, 1987) 
 

 ( )( )ηηξ a
2 11

2
1 +−=aN ,  a = 5 and 7         (3) 

 ( )( )2b 11
2
1 ηξξ −+=bN ,  b = 6 and 8         (4) 

 
 We can construct the other four shape functions (N1 to N4) in a much appropriated form 
as 
 

 ( )5811 2
1 NNNN * +−=                (5) 

 ( )6522 2
1 NNNN * +−=                (6) 

 ( )7633 2
1 NNNN * +−=                (7) 

 ( )8744 2
1 NNNN * +−=                (8) 

 
where *

aN  is the unmodified bilinear shape functions of the four-node quadrilateral elements 
given as  
 

 ( )( )ηηξξ aa 11
4
1 ++=*

aN ,  a = 1, 2, 3, 4         (9) 

 
 We can note if any of nodes 5, 6, 7 and 8 are absent, one may formally define N5, N6, N7 
and N8 to be identically zero, respectively. About the control volumes construction, we use the 
same rule employed in elements of four nodes, i. e. the control volumes are created joining the 
center of the elements to its medians. In this case, all fluxes at one specified integration point 
can be calculated using data from the element where the integration point lies. 
 The procedure to calculate the shape functions to contemplate the local mesh refinement 
technique for EbFVM, as explained before, can be summarized as follows:  
 



1. Determine the shape functions (Ni
*) for nodes 1, 2, 3 and 4 by Eq. (9). This step is 

done for all quadrilateral elements in the domain. 
2. Determine the shape functions (Ni) for nodes 5, 6, 7 and 8 by Eq. (3) and (4) in the 

neighbor elements to the refined region and faults.  
3. Determine the new shape functions (Ni) for for nodes 1, 2, 3 and 4 by Eq. (5) to (8) in 

the neighbor elements to the refined region and/or faults.  
 
 The algorithm to solve the EbFVM using this technique is still under development, but 
we can see previously that this implementation facilitates also the further using of multigrid 
techniques.  
 
 
 
4. CONCLUSIONS 

 
This work has initially presented a brief review of the most used numerical methods for 

the solution of partial differential equations, aiming their application in the petroleum 
reservoir simulation area. It was pointed out that all of them belong to the weighted residual 
approach methods. The differences among them are in the definition of the weighting and 
interpolation functions used. The special features of each method are consequence of the 
choice of those functions. 

Through the solution of the Laplace’s equation for the flow in a homogeneous porous 
media with Dirichlet boundary conditions, was possible to compare results obtained with the 
finite volume method (FVM), the finite element method (FEM), and the element based finite 
volume method (EbFVM). It was demonstrated the superiority of the EbFVM results, based 
on the discretization errors, for all levels of grid refinement. However, this tendency was not 
maintained for the same problem solved for a heterogeneous media, in which all methods 
show errors of the same order. 

It was also analyzed some typical upscaling problems with Neumann boundary 
conditions. Those problems were also solved with different numerical methods and the results 
compared. It was shown that the least accurate results are given by the methods in which an 
averaging of the properties at the control volume interfaces is used. The solution of a problem 
with a different level of heterogeneity showed that the higher this level, the worse the results 
with those methods. However, because the results presented are still preliminary, is 
recommended a deeper study, especially with problems involving multi-phase flows. 

Finally, it was presented a comparison among solutions obtained with EbFVM for a 
simple upscaling problem (2D chess-board problem), using different interpolation functions. 
Solutions with triangular, bilinear quadrangular and quadratic quadrangular elements were 
compared, maintaining the same number of grid-nodes in each case. As was expected, the 
results with quadratic quadrangular elements were the best. It was also shown that it is very 
promising the use of those higher order interpolation functions in a new local grid refinement 
scheme, as was proposed in the final part of this work. The algorithm that would use this local 
refinement scheme has some features that would facilitate the implementation of multigrid 
solution techniques.  
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