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Abstract. In reservoir simulation, one of the major difficulties is the scale difference between the reservoir and the

wellbores. The reservoir scale is of order of kilometers whereas the wells diameter is of order of centimeters. Thus, an

accurate approximation of the flow near the wells would require an extremely refined mesh in order to capture the pressure

gradient. However, the use of a very refined mesh leads to a very large computational effort. Because of this, use of meshes

having a size compatible with the scale of the reservoir and representing well flow as a source term in the mass balance

for the control volumes where they are located, is a practical solution in reservoir simulation. In that case, it is necessary

a model that mimics the local physics around the wells. The well models used in the petroleum industry normally employs

a local analytic solution, which provides the pressure gradient near the well by means of a radial flow representation.

These models, however, were developed for two-dimensional reservoirs. With the evolution of new technologies in well

drilling, horizontal wells are more and more employed, requiring new developments for that situation. In the present work

it is developed an extension of two-dimensional Peaceman’s and Ding’s well models to a three-dimensional situation, for

application in partially penetrating horizontal wells. For that goal, a local analytical solution for a cylindrical radial

flow for 3D situations were considered. All models led to good results, demonstrating their ability to represent the physics

around the wells, avoiding grid refinement.
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1. INTRODUCTION

Well models used in reservoir simulation employs a local analytical solution based on a radial flow. This local solution
is used for representing the flow near the wells and applied in two or three dimension situations. In 2D cases the wellbore
represented at the reservoir is fully penetrating, because just vertical wells are considered. In 3D cases when are used
horizontal wells, the extremities of this kind of wells are inside of the reservoir, generating a different in the flow near of
the extremities.

For application of that well models in 3D cases wellbore must be fully penetrating because the models can not represent
the horizontal well extremities. The behavior at the ends of the well is not cylindrical radial flow, but spherical radial flow
and models must be improved in order to represent that kind of flow.

Peaceman’s and Ding’s well models (Peaceman, 1978, 1983; Ding, 1998) do not include the spherical radial flow in
well indexes because they were derived for 2D cases originally. The objective of this work is to extend the Peaceman’s
and Ding’s models in order to apply them on 3D reservoir considering the spherical radial flow at the extremities of the
horizontal well.

Those models were chosen because Peaceman’s model is still one of the most used in reservoir simulation, and Ding’s
model was a extension of the Peaceman’s for off-center wells, that is, wells whose location does not coincide with the
grid-block center.



Proceedings of the ENCIT 2014
Copyright c© 2014 by ABCM

15th Brazilian Congress of Thermal Sciences and Engineering
November 10-13, 2014, Belém, PA, Brazil

2. RESERVOIR SIMULATOR

2.1 Governing Equation

The reservoir model employed is a one-phase incompressible flow in consolidated, isotropic, homogeneous and
isothermal porous medium. The main equation in the model is the Darcy’s law proposed by Darcy (1856), given by

~v = −K
µ

(∇P − ρ~g) (1)

where ~v is the Darcy’s velocity vector, µ is the dynamic viscosity, ρ is the density and P is the pressure. K is the absolute
permeability of the porous medium and ~g is the gravitational vector.

Replacing the Darcy’s velocity on the mass conservation equation, one obtains,

∂(ρφ)

∂t
+∇ ·

[
ρ

(
−K
µ

(∇P − ρ~g)

)]
= 0 (2)

where φ is the porosity of porous medium.
As the porous medium is consolidated and the fluid is incompressible, the first term on the equation Eq. (2) is null, so

the flow equation reduces to

∇ ·
[
ρ

(
−K
µ

(∇P − ρ~g)

)]
= 0 (3)

2.2 Discretization

The finite volume method is employed for the discretization of the flow equation. That method is based on a property
balance in discrete control volumes (Aziz and Settari, 1979; Patankar, 1980; Maliska, 2004), in this case mass balance.
The finite volume used is a box in a cartesian grid, with dimensions ∆x, ∆y and ∆z, in directions x, y and z, respectively.

Applying the mass balance on a hexahedral control volume it obtains

∑
nb

Tnb (PNB − PP ) = λρg
∆x∆y

∆z
(HT +HB − 2HP ) (4)

where Tnb is the transmissibility between the control volume P and its neighbor NB, that share the face nb and H is
control volume depth. The transmissibilities are defined by

Tw,e = λK
∆y∆z

∆x
, Tn,s = λK

∆x∆z

∆y
and Tt,b = λK

∆x∆y

∆z
(5)

where λ is mobility given by 1/µ.
For grid-blocks that have a wellbore inside, a source term is necessary in the balance equation, in order to represent

the mass flow entering or leaving the control volume throughout the wellbore. The flow rate that must be used as source
term in those control volume equations is

Q = λWI (Pwell − Pp) (6)

where WI is the so-called well index, which depends on geometric parameters and porous medium properties and Pwell

is the wellbore pressure.
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3. WELL MODELS

Well models are used for relating the well pressure with the grid-block pressure. So, in order to find that relation a
local analytical solution for radial flow around the well is used. The well models define a well index able to insert the
radial flow caracteristics through analytical solution. The well index is used in the Eq. (6), as previously shown.

3.1 Local Analytical Solution

In both original well models considered in this work, a radial flow with a local analytical solution is used to connect
the wellbore pressure and the grid-block pressure. So the analytical solution for radial flow from the wellbore is

P (r)− Pwell =
Qµ

2πhK
ln

(
r

rwell

)
(7)

where rwell is well radius, i.e., the radius where the pressure is well pressure and P (r) is the pressure on radius r > rwell

3.2 Well Index

The well index is defined as the ratio between the mass flow rate on wellbore and the pressure difference between
wellbore and grid-block pressure. With well index definition and radial flow analytical solution, is easy to find

WI =
2πhK

ln

(
rwell

req

) (8)

where req is the equivalent radius, which contains geometric information, well radius and grid-block dimensions.

3.3 Peaceman’s Well Model

Originally, the well model proposed by Peaceman (1978) was derived for the square grid-blocks and homogeneous
and isotropic porous medium, in order to obtain the equivalent radius with the radial analytical solution.

In order to derive the equivalent radius equation, Peaceman considered a mass balance on well grid-block, and assumed
a radial flow centered on well grid-block. As the well grid-block center and the well location are the same place, the well
model assumes that well grid-block pressure is locate in a equivalent radius and the well pressure is in the well radius.

Applying Eq. (6) on well grid-block and using Eq. (8) is possible to obtain the equivalent radius equation. Considering
rectangular grid-blocks, Peaceman’s equivalent radius is

req = 0.28
√

∆x2 + ∆y2. (9)

3.4 Ding’s Well Model

Ding’s well model (Ding, 1998) extended Peaceman’s well model for off-center well locations. Then, that author
made corrections in face transmissibilities dividing wellbore flow rate in proportion to its proximity to the face. That
corrections are made in the transmissibility of each face based on the angle formed between well location and face
vertices. The proportional grid-block face flux is defined by

feqe =
Θ

2π
Q (10)

where Q is well mass flow rate, that will be divided by four grid-block faces using the angle Θ as proportionality factor.
In order to introduce the corrections, Ding redefined the well grid-block transmissibility using a equivalent length to
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representing the discrete length of flux as

T eq
e = λKh

∆y

Leq,e
(11)

where T eq
e is the equivalent transmissibility and Leq,e is the equivalent length. Leq,e is equal to ∆x when the well location

is the center of the grid-block, returning to the original transmissibility. In that way it is possible to find the correction
factor as the ratio between the original transmissibility and the equivalent transmissibility, obtaining

αe =
T eq
e

Te
=

∆x

Leq,e
(12)

where α is reduced just a ratio between the discrete length, ∆x, and equivalent length ,Leq .
That kind of correction allows existing reservoir simulators use the Ding’s well model without any change in the

original computational implementation, just adding the corretion factor calculation. Note that in order to obtain the
correction factor is just needed to find the expression for the equivalent discrete length Leq,e.

Equivalent discrete length is obtained using Eq. (10) and aplying the analitycal solution on neighbor grid-blocks that
shares face e. Therefore, the equivalent length is given by,

Leq,e = ∆y
ln
(

rE
rP

)
Θe

(13)

where rE and rP are the distances between the well location and the centers of grid-blocks E and P , respectively,
determined by

ri =

√
(xi − xwell)

2
+ (yi − ywell)

2 (14)

Then the face angle is obtained with,

Θe = arctan

(
yP + 0.5∆y − ywell

xP + 0.5∆x− xwell

)
− arctan

(
yP − 0.5∆y − ywell

xP + 0.5∆x− xwell

)
(15)

where xP and yP are the well grid-block center coordinates.
Therefore, the correction factor can be calculated using Eqs. (12), (13) and (15). Now it is necessary to multiply

original transmissibility. Finally, the well index must be introduced into the source term at well grid-block balance
equation. It requires a small change to apply the well index, as can be seen in the next relationship

WI =
2πhK

ln

(
rwell

rP

) (16)

where rP is calculated by Eq. (14). When rP ≤ rwell Peaceman’s equivalent radius must be used in place of rP . Note
that when the well is located at the well grid-block center, Ding’s well model reduces to Peaceman’s well model by two
reasons: the Leq

e is equal ∆x and rp on WI is equal req .

4. MODIFIED WELL MODELS

To modify the well models were inserted at well extremities the spherical radial flow, just adding a new flux on the
well grid-block corresponding to well extremities.
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4.1 Modified Peaceman’s Well Model

In order to consider spherical flow at well extremities, it is necessary to obtain an analytical solution, corresponding
to the spherical radial flow, that solution is given by

P (r)− Pwell =
Qµ

4πK

(
1

rwell
− 1

r

)
(17)

whereas, the corresponding spherical well index and equivalent radius are

WI =
4πK(

1

rwell
− 1

req

) and req =
Tw + Te + Tb + Tt + Ts

Tw
rw

+
Te
re

+
Tb
rb

+
Tt
rt

+
Ts
rs

+ 4πλK
(18)

where rw, re, rb, rt and rs are the distances between well grid-block center and the center of a neighbor grid-block.

4.2 Modified Ding’s Well Model

In order to extend Ding’s well model, adding the semi-spherical radial flow, it is necessary to work with solid angle to
divide the well mass flow rate proportionally in the well grid-block faces, for representing the spherical radial flow. But
this kind of flow must be considered only at well extremities, whereas the flow around the rest of the well remains radial
cylindrical as considered before.

Following the same procedure of Ding’s model and using the solid angle Ω in place of plane angle Θ, a equation for
calculating the equivalent discrete length, can be found as

Leq,e = ∆y∆z
β
(

1
rP
− 1

rE

)
Ωe

(19)

where parameter β is defined by

β =

5∑
nb=1

Ωnb

4π
(20)

that parameter is necessary because one of the well grid-block faces is traversed by the well orthogonally, so the well flow
rate is not divided with that face. That situation occurs because the flow rate considered in the extremities is hemispheric,
thus the well flow is divided by others 5 faces. The solid angle Ωe is obtained by vectors formed from well extremity and
vertices of face. The solid angle can be calculated using the procedure shown by Oosterom and Strackee (1983).

5. RESULTS

To evaluate the accuracy of modified models three tests are considered, two refinement tests and one test to evaluate
the spherical portion inserted on original well models. The refinement tests are separate for modified models one for each.
The spherical portion test is only to compare the modified models. A numerical solution on a very refined unstrutured
mesh is used as reference solution. That solution was obtained with the Element based Finite Volume Method (EbFVM),
with a mesh of 6,603,809 elements ((Maliska et al., 2010)). The EbFVM and applications in reservoir simulation can be
found in Hurtado (2005) and Cordazzo (2006).

5.1 Base Problem

The base problem consists of a box reservoir domain with one production horizontal well and one injection vertical
well, both wells with constant pressure considering infinite condutivity, i.e., without solving internal well flow. The
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simulation is a one-phase flow with null flux in the reservoir boundaries. The reservoir domain can be seen in Fig. (1).
The dimensions of reservoir domain and the tests features will be indicated afterward in each test subsection.

Figure 1. Reservoir Domain

The fluid properties, porous medium properties and operating conditions used in the tests can be found in Tab. 1.
Those values were used in all tests.

Table 1. Tests Input Data.

Data Value Unit

Porous Medium Porosity 0.227 -
Permeability 8.0× 10−13 m2

Fluid Density 1000 kg/m3

Viscosity 1.43× 10−3 Pa.s

Operating Conditions
Well Radius 0.1 m

Injection Pressure 1.0× 107 Pa
Production Pressure 1.0× 103 Pa

5.2 Refinement Tests

The refinement tests were made one for each modified well model, the reservoir domain will be shown following.

5.2.1 Modified Peaceman’s Model

The reservoir domain data can be seen in Tab. 2 and flow rate erros in Tab. 3. In all cases the reservoir dimensions are
Rx = 1000m, Ry = 1000m and Rz = 60m

Table 2. Refinement Test Well Position for Modified Peaceman’s Model.

Well Injection
Xwi 83.334m
Ywi 83.334m
Well Production
Xwp 350m
Ywp 783.334m
Zwp 30m
Lwp 300m

5.2.2 Modified Ding’s Model

The reservoir domain data can be seen in Tab. 4 and flow rate erros in Tab. 5.
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Table 3. Refinement Test Flow Rate Errors for Modified Peaceman’s Model.

Grid Flow Rate (m3/s) Error(%)
Reference Solution 1.2968× 10−2 -

30x30x3 1.2811× 10−2 1.21
90x90x9 1.2637× 10−2 2.56

270x270x27 1.2633× 10−2 2.59

Table 4. Refinement Test Well Position for Modified Ding’s Model.

Well Injection
Xwi 38.75m
Ywi 38.75m
Well Production
Xwp 358.75m
Ywp 798.75m
Zwp 38.75m
Lwp 300m

Table 5. Refinement Test Flow Rate Errors for Modified Ding’s Model.

Grid Flow Rate (m3/s) Error(%)
Reference Solution 1.1273× 10−2 -

50x50x3 1.1075× 10−2 1.76
100x100x6 1.1106× 10−2 1.48

200x200x12 1.1136× 10−2 1.22

5.3 Spherical Portion Test

The reservoir domain data can be seen in Tab. 6, flow rate erros in Tab. 7 and flow rate curve along of horizontal well
in Fig. (2).

Table 6. Spherical Portion Test Well Position.

Well Injection
Xwi 55m
Ywi 55m
Well Production
Xwp 315m
Ywp 595m
Zwp 35m
Lwp 380m

Table 7. Spherical Portion Test Flow Rate Errors.

Grid Flow Rate (m3/s) Error(%)
Reference Solution 1.3240× 10−2 -
Peaceman’s Model 1.3073× 10−2 1.26

Modified Peaceman’s Model 1.3078× 10−2 1.23
Ding’s Model 1.3042× 10−2 1.50

Modified Ding’s Model 1.3053× 10−2 1.42
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Figure 2. Horizontal Well Flow Rate Gradient - Spherical Portion Test

6. CONCLUSIONS

The modified models presented good results. It was expected because in real flow in horizontal well has the spherical
portion on extremities. Note that the spherical radial flow adds a very small value on the total flow rate, because the
semi-spherical area is much smaller than cylindrical area along the well. The computational implementation is relatively
simple, it is not necessary a reimplementation just add the correction factors in the well index calculation. However is
necessary to perform further new tests to better evaluate the incorporated changes.

There is a result on Tab. 3 which shows an increase in the total flow rate error with grid refinement. The origin of this
problem was not determined and more tests must be made for a better analysis.
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