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Abstract:  Field-scale reservoir simulations are usually carried out using corner-point grids (Ponting, 1989) with a 5-point stencil for the 
sake of simplicity of the whole numerical scheme. Although the use of these grids permits a good representation of reservoir 
geological features and reservoir description, the use of 5-point scheme yields wrong results, since fluxes through interfaces are 
calculated using only two grid points. It is well known that the use of two grid points for the flux calculation only gives accurate 
results if the grid is locally orthogonal. In this paper, this key issue is addressed through a study of several different ways of 
calculating the transmissibility using two grid points. Due to the physical similarity of the equations, heat conduction problems 
with analytical solution are used for comparing the results for the transmissibility between grid blocks. Following, it is proposed 
an EbFVM-Element-based Finite Volume Method using mixed triangular and quadrilateral elements for the simulation of multi-
phase flows in porous media. The proposed method retains the geometric flexibility of the finite-element procedure and derives 
the governing discrete algebraic equations by using a conservation balance applied to discrete control volumes distributed 
throughout the domain. The method resembles the one used in fluid mechanics and heat transfer calculations, allowing the 
evaluation of the mobility in eight integration points when a quadrilateral element is used. Since the grid can be unstructured and 
arbitrary, local grid refinement for near-well resolution can be achieved in a simple and consistent manner. Transmissibility 
terms are embodied in the coefficients and are not individually identified. An analysis of a skew method used to calculate the 
mobility is also done. 

 

1. Introduction 
 
In this paper we discuss important aspects related to the 

grids used for petroleum reservoir simulation. Initially, the 
transmissibility is presented in the framework of boundary-
fitted grids in order to study the two-point approximation 
approach. It will be possible to clearly identify the terms that 
are neglected in the flux calculation and how they affect the 
results. The traditional methods in petroleum engineering, as 
reported by Sammon (2000), employ, in general, two-point 
flux approximation scheme in order to reduce the 
computational cost. 

In addition, this paper presents several examples of 
transmissibility calculation using a commercial simulator, 
where the results, in some cases, agree with the equations 
presented here, and in others, they do not. The differences are 
then plotted for different geometries.  

Finally, the basic ideas of a new numerical scheme for 
reservoir simulation are presented. They are based on the 
EbFVM (Element based Finite Volume Method), and it can 
mix triangular and quadrilateral elements. In this method the 
transmissibility terms are embodied in the coefficients and are 
not individually identified. It results, for a 2D situation, in a 
nine-point scheme for both the pressure and the mobility. 

 
 
2. Transmissibility definition  
 
The focus of this paper is to analyze the conductance that 

appears in mass transfer problems in petroleum engineering. 
In other words, we want to study the water, oil and gas mass 
flow in a porous media. This special conductance, in this 
problem, is called transmissibility, and it involves intrinsic 
and relative permeabilities, fluid viscosity, the formation 
volume factor, and geometric parameters. Our interest in this 
paper is to analyze only the effects of the grid geometry on the 
transmissibility, i.e., we consider known all physical 

parameters. Therefore, it will be assumed a media with 
homogeneous mobility. No phases subscript will be used here, 
and a two dimensional problem is presented for simplicity 
with no loss of generality. So, the equation for one of the 
components in a multiphase flow is given by  
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where P is the pressure, λ is the mobility, φ  is the porosity, S 
is the saturation, B is the formation volume factor and q  is 
the flow rate per unit of reservoir volume, at reservoir 
conditions. 

As we can see, Eq. (1) is in the vector form and can be 
written for any coordinate systems (Maliska, 1995). For our 
two dimensional problem, consider the following coordinate 
transformation ( )yx,ξξ = , ( )yx,ηη =  and t=τ . 

Written in the new ),( ηξ  system, Eq. (1) is given by  
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For a constant λ, we have  
 

( ) JyxΓD ηη
22

1 +=       (3) 
 

( ) JyyxxΓD ηξηξ +−=2       (4) 
 

( ) JyyxxΓD ηξηξ +−=3       (5) 
 

( ) JyxΓD ξξ
22

4 +=            (6) 
 
where J is the Jacobian of the transformation and 
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Bµ
kkΓ r⋅== λ       (7) 

where λ is the mobility, k and kr are the intrinsic and relative 
permeabilities, respectively, µ is the fluid viscosity, and B is 
the formation volume factor. 

 
We can define the metric tensor 

~
g as 
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where the components are 

 
22

22 ηη yxαg +==       (9) 
 

22
11 ξξ yxγg +==     (10) 

 
and 

 
ηξηξ yyxxβgg +=== 2112     (11) 

 
It is important to recognize that in Eq. (2) the terms 

 

ηξ ∂
∂+

∂
∂ PDPD 21       and       

ηξ ∂
∂+

∂
∂ PDPD 43  

 
represent, respectively, the fluxes through aξ =constant and 
η =constant surfaces, as shown in Fig. 1. 

 

 
 

Fig. 1- Control volume and surface fluxes 
 
 
These terms appear when Eq. (2) is integrated in the 

control volume and represents, therefore, the fluxes at the 
control volume surfaces. These are the fluxes that should be 
used for the transmissibility determination in its exact form. 
The east (e) surface flux, for example, is given by 

                                                                      

ηξ ∂
∂+

∂
∂= PDPDfe 21                                                      (12) 

 

where JD αΓ=1  and JD βΓ−=2 . 
 
The first important observation is that in non-orthogonal 

grids the flux evaluation will be always in error if the cross-
derivative term η∂∂ /P  is set to zero in Eq. (12). 

If η∂∂ /P  is not set to zero, the algorithm will require, 
for a non-orthogonal grid, 9 points for 2D and 19 points for 
3D. This term disappears when the grid is orthogonal, since, 
in this case, β, defined by Eq. (11) is zero. 

The flux in east surface is, therefore, calculated in the 
exact way as 

 

η
β

ξ
α

∂
∂

Γ−
∂
∂

Γ=
PJPJf e           (13) 

                               
Using Fig. 2 one can show some geometric relationships 

(Maliska, 1995) that will be used in the next equations. They 
are 

 
ξγξ ∆=dL            (14) 

 
and 

 
ηαη ∆=dL            (15) 

 
 
 

 
 

Fig. 2- Some important geometrical relationships 
 
 
 
Eq. (13) can be rewritten as 
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∂
∂Γ=

ηα
β

ξ
αα PJPJf e            (16)               

 
where the term α  was put outside of the brackets in order to 
obtain the flux area. We can notice that the distance AB , 
defined in Fig. 2, is α = 22g  , which is the flux area and, 
therefore, it should takes part in the transmissibility 
expressions. 
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It is easily demonstrated that the term in brackets in Eq. 
(16) is, exactly, nP

r
∂∂ /  where n

r  is the normal vector to the 
area α . Rewriting Eq. (16), one obtains 

 

n
Pfe r

∆
∆Γ= .α                                                              (17)                                                                                                

 
Using Eq. (17) we can now define the transmissibility as 
 

∆n
αΓT =            (18) 

 
where ∆n  is the distance between two grid points lying over 
the normal direction, as shown in Fig. 3. It is clear that other 
points than P and E will be needed for evaluating pressures at 
points 1 and 2. 
 
 

 
 

Fig. 3- Evaluation of pressure gradient in the normal direction 
 
 
Therefore, the scheme that calculates the flux by 
 

( )21 PP
n

fe −
∆

Γ
=

α
                                                        (19) 

 
is exact, except for truncation errors due to the numerical 
approximation. In other words, with the pressure in the normal 
direction the transmissibility 
 

 
n

T
∆

Γ
=

α
            (20) 

 
is exact . The scheme, however, involves 9 points. 

Interpolating points on the normal direction is not a 
practical process, and it is desirable to use only two grid 
points. Returning to Eq. (16), 
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and keeping in mind that α  is the flux area and after some 
algebraic manipulations, Eq. (21) yields 
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Substituting the equations (14) and (15) in (22), one 

obtains 
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It is easy to show that (Maliska, 2001) 
 

α
γα
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1=J   

 
and 

 
θαγβ cosJJ =                                      (24)           

 
 

 
  

Fig. 4 � Relationship between α  and θ angles 
 
 
The α angle in Fig. 4 should not be confused with the 

component of metric tensor g11. Using Eq. (24), Eq. (23), 
yields 
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Inspecting Fig. 4, and algebraically manipulating the θ 

and α angles, we can see that Eq. (26) yields 
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Using Eq. (27), we can analyze the transmissibility 

equations. With the help of Fig. 5, one can see that the 
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interface area (A) of element P has a relationship with flux 
normal area (AP) by 

 

PAAAC

AAB

==

==

α

α

cos
          (28) 

 
 
 

 
 
 
Fig. 5 � Relationship between interface area and normal area 

 
 
Therefore, Eq. (27) can be written as 
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Up to now no simplifications were made and the value of 

fe  in Eq. (31) is exact. 
To avoid nine point schemes (or 19 in 3D), we can 

neglect the term ( ) αη senLP ∆∆ / . If α is small, this 
approximation may not be too serious. Note that since there 
are not absolute rules in engineering, neglecting this term 
depends on the quality of the solution one wants. If this 
simplification is reasonable, the flux can be calculated by 

                                                 

( )PE

bilitytransmissi

P
e PP

L
A

f −
∆

Γ
=

43421
αξ

2cos
                                     (32) 

 
Obviously the flux calculated in this way is not correct 

because the term η∂∂ /P  was neglected. 

In the transmissibility definition given in Eq. (32), the 
area is normal to the length that appears in the denominator 
( ξL∆ ), as it should be. Eq. (29) could be written also as 

 

 ( )PE
ξ

e PP
∆Lα
AΓ

f −=
cos

                                             (33) 

 
Eqs. (32) and (33) are identical, but is rearranged in order 

to appear the factor cos2α. 
Therefore, the transmissibility for a two-point 

approximation scheme for the flux is given by 
 

αξ
2cosL

AT P

∆
Γ=            (34) 

 
The flux given by ( )PEe PPTf −= .  contains errors due 

to the simplification of ( ) 0/ =∆∆ αµ senLP . 
Note that in two dimensional problems, for example, the 

transmissibility only appears explicitly in schemes that use 5 
points to approximate the flux. In 9-point schemes, on the 
other hand, transmissibility terms are embodied in the 
coefficients and are not individually identified. 

 
3. Transmissibility Approach in Reservoir Simulators 
 
Most reservoir simulation models use two-point flux 

approximation schemes. The motivation for this choice is the 
reduction of computational effort. Heinemann & Brand (1989) 
presented the procedure more employed in simulators, and it 
is described below. The mass flux of a component between 
two adjacent grid-blocks i and j in the discrete solution of the 
transport equations is given by 

 

( ) ( )ij p

P

p ij

ij
ijpij h

A
kQ Φ−Φ∑

=
Λ=

1
                   (35) 

 
where pΛ is the mobility of phase p,  P is the number of 
phases; k is the absolute permeability; Φ  is the phase 
potential, Aij and hij are, respectively, an area where the mass 
flows and an adequate length for the gradient determination in 
the surface. The procedure usually utilized to determine the 
last two geometric parameters will be present in chapter 3.1.  

In Eq. (35), the terms independent of pressure and 
saturation can be grouped in the form 

 

( ) ( )ij p

P

p ijpijij TQ Φ−Φ∑
=

Λ=
1

                         (36) 

 
where Tij is called transmissibility which is, therefore, defined 
as  

 

ij

ij
ijij h

A
kT =                          (37) 

 
The inverse of the transmissibility is the resistivity given 

by 
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T
r 1=                          (38) 

 
Transmissibility depends only on block geometry and 

permeability. When using conservative numerical methods, 
the integration of differential equations in the divergent form 
demands the calculation of the fluxes in the control volume 
interfaces. As the domain may be heterogeneous, sometimes 
with great differences in terms of permeability in adjacent 
grid-blocks, the definition of average properties in the 
interface can result in errors in the flux calculation. The most 
appropriate procedure to calculate transmissibility is to model 
it as the inverse of the resistance in each control volume. As 
already stated, for orthogonal grids with fully coincident 
interfaces this procedure leads to the exact flux determination. 
On the other hand, for non-orthogonal grids, grids with partial 
contact between the grid-blocks or with local refinement, the 
flux surfaces need to be defined. The Ohm�s Law can be 
applied to calculate the total resistance, and in consequence 
the total transmissibility, for elements connected in series or 
in parallel because Eq. (35) is linear in the potential 
difference. For the case of a series connection, as shown in 
Fig. 6, we have 

 

21
2112

11
TT

rrr +=+=           (39) 

  
where ri is the inner-block i flow resistance and Ti is the 
transmissibility of block i. So, the total transmissibility 
between two grid-blocks 1 and 2 is given by 
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12
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TT

TT
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=
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where the transmissibility calculated in this way constitutes a 
harmonic averaging of the transmissibilities in blocks 1 and 2. 

In this work, as shown earlier, we represent with only one 
subscript the transmissibilities determined by geometric and 
permeability parameters of one block only (T1, for example). 
For the case where transmissibilities are calculated using two 
blocks properties, we represent it using two subscripts, like 
T12, for example. 

 
 

 
 

Fig. 6 � Calculation of transmissibility using the analogy with electricity 
 
 

As there is the possibility of partial contact between two 
grid-blocks, as shown Fig. 7, the total transmissibility can be 
calculated as 

 

2

2
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1
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A
T c

+
=           (41) 

 
where Ac is the contact surface, A1 and A2 are the complete 
surface of each neighbor, and T1 and T2 are their inner 
transmissibilities. We can observe that in this case we chose to 
use the area Ac, the contact area, to calculate the 
transmissibilities of grid-blocks 1 and 2, which is an 
approximation that will not lead to the exact value, even with 
grid refinement. If the adjacent blocks are in fully contact the 
interface areas A1=A2=Ac, and Eq. (41) can be written as 
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+
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which is the Eq. (40) already shown. 

 
 

 
 

Fig. 7 � Partial contact between two grid-blocks 
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In the most general case, when A1 ≠ A2 ≠ Ac , as shown in  

Fig. 7, Eq. (41) results in 
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+
=       (43) 

 
which can be seen as being Eq. (40) weighted by the areas. 
The contact area divided by grid-block area appears as a 
multiplying factor for each transmissibility. If these areas are 
A1 ≠ A2 ≠ Ac and locally non-orthogonal, as shown in Fig. 8, 
there is the need of not only a surface multiplier but also of 
some type of projection of the surface. In this case, again, the 
transmissibility will not tend to the exact value with grid 
refinement, what would be expected in any numerical 
solution. Thus, when non-orthogonal grids and/or grids with 
partial contact are used, the flux calculation can not be exactly 
calculated if only two grid points are used. The only exception 
for this rule happens when the problem is one dimensional, 
and in this case, as it is shown in next chapter, the 
transmissibility calculation with two grid-points is exact. 
 
 
 

 
 

Fig. 8 � Locally non-orthogonal grid-blocks (volumes) 
 
 

3.1 � Usual procedure for the determination of areas 
and lengths in the transmissibility calculation 
for 3D grids 

 
The schemes for calculating the transmissibilities used by 

most reservoir simulators that use corner point grids will be 
considered in this section. A volume created in this way is 
defined by 8 corners. Such grids can be severely faulted and 
the corner point volumes near the faults, and elsewhere, can 
be distorted. Fig. 9 presents a cell built by corner definition. 

 

 
 

Fig. 9 � Corner point grid (Sammon, 2000) 
 

 
Sammon (2000) presents the procedure used by most 

reservoir simulators; one of them being the software IMEX 
(Implicit Explicit Black Oil Simulator) by CMG (Computer 
Modelling Group Ltd.) (Salazar, 2002). Here we will present 
briefly the transmissibility calculation schemes for corner 
point grids. Assume that the cell in Fig. 9 contacts another cell 
through its front face. Then, the vector that is parallel to the 
vector that goes through the barycentre of the volume and 
frontal face is given by 

 
v = [C2 - C1 + C4 - C3 + C6 - C5 + C8 - C7] / 4      (44) 
 
Notice that any vector Ci is a vector that has its origin in 

the origin of the coordinate system, and its end in point Ci. In 
other words, C1 is a vector and C1 is the end point this vector, 
where the only typing difference is the bold letter. Therefore, 
in this case, the module of vector v is the length of the straight 
line that goes through the centre of the surface built using 
points C2, C4, C6 and C8 and goes through the centre of the 
surface created by points C1, C3, C5 and C7. Its unit vector is 
given by 

 
vvv /� =            (45) 

 
The contact area aligned with this centre-to-centre line is 
 

∫∫= )(,� PSv dA           (46) 
 
Calling the adjacent grid-blocks as �1� and �2�, there are 

two vectors: v1 and v2, and two effective areas that need to be 
computed: 

 

∫∫= )(,�1 PSv1 dA  and   ∫∫= )(,�2 PSv2 dA         (47) 
 
Notice that there is the possibility of partial contact 

between these two blocks, and then the total transmissibility 
T12 can be determined, as already stated, by 

 

2

2

1

1
12

T
A

T
A

A
T c

+
=             (48) 
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where Ac is the contact area, A1 and A2 are the effective areas, 
and T1 and T2 are transmissibilities given by 

 

2
v1

11
1

Ak
T =          and        

2
v 2

22
2

Ak
T =                       (49) 

 
where k1 and k2 are the permeabilities of each volume. Note 
that Eq. (48) is the same equation present in Hegre et al. 
(1986).  

For the case shown in Fig. 10, i.e. for a geometry where 
its volumes have full contact, and the centre-to-centre line of 
the volumes is orthogonal to the flux surface, the 
transmissibility of volume 1, for example, is given by 

 

2

1
1 x

yzk
T

∆
∆∆

=                             (50) 

 

 
 

Fig. 10 � Regular geometry blocks  
 

 
On the other hand, Fig. 11 presents a case where a 

volume is connected to other two volumes. This situation can 
appear in local refinement or in corner point grids. In this case 
there is a common contact area, Ac, between the volumes 2 
and 3. 

 
 

 
 

Fig. 11 � Dimensions involved in transmissibility calculation 
between volumes 2 and 3 

 
According to equations (49) and (50), there are the 

resistances shown in Fig. 12 (a). It is interesting to note that 
the transmissibility calculation between the volumes 2 and 3 
neglects the gray area of Fig. 12 (b). 

 
                      

                                           
                     
                           (a)                                                               (b)           
  

  
Fig. 12 � (a) Resistance representative scheme used in simulators (b) gray 

areas that are neglected in the calculus of the transmissibility T23 
 

 
 
Fig. 13 (a), on the other hand, presents a grid where its 

volumes have partial contact with each other, i.e. the common 
contact area is not the total area of each volume. Actually, the 
grid that is being used, at least in terms of connectivity, is 
shown in Fig. 13 (b), where it is shown three pairs of 
resistances involving three pairs of neighbor volumes. This is 
the geometrical situation interpreted by simulators, and it 
reproduces the analytical solution of a one dimensional 
problem. 

In Appendix A, the numerical solution of a one 
dimensional heat transfer problem is presented. This problem 
has geometrical similarity with the porous media problem. It 
is demonstrated that the flux approximation by two-point 
scheme, as assumed in petroleum reservoir simulators, is the 
exact solution only for one-dimensional problems. 

 
 
 



 CORDAZZO ET AL.:  INTERBLOCK TRANSMISSIBILITY CALCULATION ANALYSIS FOR PETROLEUM RESERVOIR SIMULATION  
 

8

 
 

Fig. 13 � (a) Corner point grid; (b) Resistance representative scheme used 
in simulators where the gray areas are not utilized in the calculus of 

transmissibilities 
 
 

3.2 � Considerations about transmissibility calculation 
in some of the most used grid types 

 
In this section we consider the different schemes used to 

build the grids in most commercial simulators and how they 
affect the transmissibility determination. Theses schemes are 
related to the way the grid is built and is inputted to the 
software. Three different grid types will be considered: 
Cartesian, modified Cartesian and corner point. By modified 
Cartesian we understand the grid where the volumes are 
defined by the z coordinate of the top surface. They are 
Cartesian volumes whose lateral surfaces may not match. 

 
3.2.1- Cartesian grids 

 
In Cartesian grids, the area in transmissibility expression 

is the transversal flux area, i.e. for direction x, for example, 
the area is ∆y∆z, while the length between centre-to-centre 
grid-point is ∆x. Transmissibility calculation done in this way 
is exact, as already seen in this work and in Maliska et al. 
(2002b). Fig. 14 presents a Cartesian grid with non-uniform 
spacing between the cells. 

 
 
 

            
 

Fig. 14 - Cartesian grid with non-uniform spacing 
 

 
3.2.2 � Modified Cartesian grids 

 
This grid is used in cases where we need a grid that 

presents layers of uniform thickness but with different depths. 
In this type of grid each column is shifted vertically. The area 
and the length used in the transmissibility expression, 
however, are the same used in Cartesian grids. Then, for the 
direction x, for example, the transmissibility is given by 

 

 k
X

ZYT
∆

∆∆=            (51) 

 
Thus, we can have simulations which are at least 

�strange� as shown in Fig. 15. In this figure the reservoir with 
a constant inclination, Fig. 15a, was discretized by the blocks 
shown in Fig. 15b. Although the surfaces of the neighbor 
volumes are not in contact, in this model there is a mass flux 
between these surfaces, since the way transmissibility is 
defined permits it. The apparent no connection between the 
volumes can appear due to the use of a small quantity of 
volumes in the discretization and the reservoir dip. Actually, 
the simulator deals with the grid depicted in Fig. 15b, and 
with any grid built in this way, if it were as shown in Fig. 15c. 
In this approach, the fluid �disappears� in a point and 
�appears� in another point. The contacts, therefore, exist and 
the depth differences between the volumes are considered in 
the equations for the potential Φ. In other words, the grid is 
interpreted as the Cartesian of Fig. 15c, what demands a 
correction in the transmissibility values. 

 
 

 
 

Fig. 15 (a) 
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(b) 
 

 

 
       

(c) 
 

 
Fig. 15 � Modified Cartesian grids used in simulations: (a) reservoir 

description; (b) grid utilized in the discretization, and (c) effective grid 
where the transmissibilities by simulators are calculated (from IMEX) 

 
 

Often commercial simulators permit to correct the 
transmissibility values already calculated by using 
transmissibility multipliers called TRANSI, TRANSJ, and so 
on, depending on the kind of simulator. For IMEX, Version 
2002 User´s Guide, the default value is 1. 

In these grids, when a simulator does not correct 
automatically the transmissibility value, it is recommend to 
multiply it by factor cos2α. The reason is that the contacting 
cells centre-to-centre distance, as shown in Fig. 16, is 
∆x/cosα, and the transversal area to flux is now ∆y∆zcosα. 
Thus, for this type of grids, with a constant dip, the 
transmissibility multiplier should be used, assuming the value 
cos2 α. 

 
 

 
 

Fig. 16 � Important geometrical parameters for the transmissibility 
calculation  

 
 

 

3.2.3 � Corner points grids 
 
Another scheme that has been used in simulators for 

calculating transmissibilities is applied when corner point 
grids are employed. In this case, each grid-point should be 
given as input. The grid shown in Fig. 17 was built this way. 

 
 

 
 

Fig. 17 � Example of a corner point grid (from IMEX) 
 
 

The approach utilized for this type of grid is the same 
presented earlier in the section that discusses 3D grids. Hence, 
the simulators determine for each volume the distance 
between the two opposite face barycentres, the transversal 
area in the flux direction, and then the transmissibilities. As 
already mentioned, this is a good procedure (at least it is exact 
in a 1D problem). Therefore, the transmissibility multiplier 
should be the default value, which is 1. 

  
 

 
 

(a)                                                    (b) 
 

Fig. 18 � Possible cases that can happen in corner points grids: 
(a) small contact area, and (b) null contact area 

 
 
The transversal area in the flux direction, which is 

utilized in the corner point grids transmissibility 
determination, is calculated by contact area of adjacent 
volumes. In Fig. 17, for example, the whole western surface 
of a volume is in contact with the whole eastern surface of 
another one. However, we can have situations like the one 
presented in Fig. 18a, where one observes that the contact 
area is smaller than the whole neighbor volumes surfaces. At 
the furthest extreme there is a case where the flux is zero since 
the neighbor volumes are not in physical contact (Fig. 18b). 
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A modified Cartesian grid can be built also by corner 
point grids if one uses the command special connections, 
likely found in most simulators. This command connects any 
two volumes, i.e. informs a value of transmissibility that will 
be used by the simulator between these volumes, even if they 
are not neighbors. 

If in Fig. 19 the grid was built by corner points, the 
transmissibility in the I direction (the horizontal one) will be 
zero, and the flux will be zero. In order to use this grid, we 
need to calculate the transmissibility externally to the 
simulator, and input it into the simulator using the special 
connections command. We also should remember to correct 
this value by cos2α. 

 
 

 
 

Fig. 19 - Grid possible to be built by corner point definition.  In this case 
one should use the special connections command. 

 
 
 
 
3.3 � Differences found in IMEX Transmissibility 

Calculation 
  
This work presents several examples of transmissibility 

calculation using the commercial software IMEX (CMG) and 
the Sammon (2000) equations (described in section 3.1). The 
motivation for performing this comparison is that the results 
obtained using IMEX do not compare, in several cases, with 
the ones calculated using the Sammon�s equation. These 
comparisons are embodied in a technical note to CMG by 
Maliska et al. (2002a). 

To begin the presentation of the results, it is shown 
several cases where the transmissibilities calculated by IMEX 
plotted in the output file are coincident with those obtained by 
Sammon�s equation. Figures. 20a, 20b and 20c present three 
of those cases. Fig. 20d, on the other hand, is a case where the 
transmissibility calculated by IMEX differs in 7.5% from the 
results obtained by the Sammon�s equation. 

 

 
Fig. 20 (a) 

 

 

 
Fig. 20 (b) 

 
 

 
Fig. 20 (c) 
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(d) 

 
Fig. 20 � Different grids with two blocks in contact:  (a), (b) and (c) the 

results of transmissibilities are coincident; (d) the result of IMEX 
transmissibility disagrees with that of Sammon 

 
 
In this section is done a qualitative study about these 

differences in cases commonly found in simulations. The 
percentage difference in transmissibility calculation is defined 
by 

 

100% 






 −=
Sammon

ImexSammon

T
TTDifference                       (52) 

 
 
3.3.1 � Difference  in  transmissibilities  values  in   
            function of lengths d1, d2 and angle α 

 
For the general case shown in Fig. 21 the relevant 

dimensions are the lengths d1 and d2, and the angle α. 
From the results obtained, it is conclude that the 

differences are independent of both permeability and contact 
surface of volumes. 

 

 
Fig. 21 � Neighbor volumes with lengths d1 and d2 

 
 

Fig. 22 presents the percentage difference curves as a 
function of the relation d1/d2 and angle α. Note that the 
difference increases as angle α increases. For α = 80º and d1/d2 
= 0.5, for example, the difference is, approximately, 45 %. 
With α = 60º and the same length relation, the difference 

decreases to, approximately, 10 %. The error is negligible for 
angles α less than 35º. 

 

 
Fig. 22 � Isolines of percentage differences as a function of angle α and 

the relation d1/d2 
 

 
3.3.2 - Differences in transmissibility as function of the  

angles α1, α2 and length d 
 

For the general case shown in Fig. 23 the relevant 
dimensions are the angles α1 and α2, and the length d. 

 

 
Fig. 23 � Neighbor volumes with angles α1 and α2 

 
 
The results demonstrated that the differences are 

independent of permeability, and contact surface of volumes, 
and length d. 

Fig. 24 presents the percentage differences curves as a 
function of angles α1 and α2 defined in Fig. 23. Note that the 
isolines are symmetric, i.e. the difference verified with α1 = 
60º and α2 = 60º, for example, is identical to the 
configurations that follows 

    
α 1 = 60º and α 2 = -60º 
α 1 = -60º and α 2 = 60º 
α 1 = -60º and α 2 = -60º 
 
In any situation where | α 1|=| α 2|, the difference is zero. 
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Note that the differences are less than 1% and can be 
negligible in the region between the angles -30º and 30º (the 
central region of Fig. 24). 
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Fig. 24 � Isolines of percentage differences as a function of angles α1  and 

α2 

 

 
3.3.3 - Differences in transmissibility as a function of 

α1, α2, d1 and d2 
 

Finally, the analysis that follows is a general case and the 
relevant parameters, the lengths d1 and d2, and the angles α1 
and α2 are shown in Fig. 25. 

 
 

 
 

Fig. 25 � Neighbor volumes with angles α1 and α2, and lengths d1 and d2, 
respectively 

 
Again, the differences in transmissibility are independent 

of permeabilities and contact area. 
Fig. 26 shows the plot of percentage difference for the 

situation described in Fig. 25. The only care in using this 
figure to find out the error is to assign the subscript 1 to the 
volume that has the largest angle in relation to the horizontal 
plane, that is, α1 ≥ α2 

 
 

 
Fig. 26 �  Isolines of percentage differences for the situation described in 
Fig. 25. Using this figure the subscript 1 must be assigned to the volume 

that has the largest angle related to the horizontal plane, that is,   (α 1≥ α2) 
 

 
 
4. Presentation  of  a  EbFVM  Method   for   reservoir 
     simulation 

 
As reported by Tamin et al., 1999, a great amount of 

research was dedicated in the last decade in evaluating the 
available tools for numerical reservoir simulation. In contrast 
there was little efforts in developing new technologies and 
new approaches using conservative numerical schemes. 
Following, it is presented the ideas of a numerical reservoir 
simulator under development. It employs the ideas of Raw 
(1985) when developing the FIELD method for solution of the 
Navier-Stokes equations. It belongs to the class of the 
Element-based Finite Volume Methods (EbFVM) with new 
features for mobilities evaluation, relative and absolute 
permeabilities and local refinement near wells and/or faults. 
EbFVM is a better denomination for the method (Maliska 
2003), also known as Control Volume Finite Element Method 
(CVFEM) since it is a finite volume methodology which 
borrows from the finite element technique the concept of 
elements. CVFEM would suggest a finite element 
formulations that obey the conservation principles at discrete 
level. However, these are called mixed finite element 
methods. 

 

 
 

Fig. 27 � Element, volume and sub-volume with integration points in a 
corner point grid  
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The motivation for using this methodology is its 
flexibility, generality and clean computational 
implementation. 

In a finite volume methodology the domain is covered by 
non-overlapping control volumes where the balances are 
done, as shown in Fig. 27. where an element is also defined. 
In the cell vertex construction, the control volumes are created 
joining the center of the elements to its medians. The resulting 
control volume is formed by portions (sub-control volumes) 
of neighboring elements. In this case, all fluxes at one 
specified integration point can be calculated using data from 
the element where the integration point lies. This allows the 
creation of the approximate equation for the unknown variable 
located at the center of the control volume which is formed by 
sub control volumes of the neighboring elements. Although 
this methodology can be generalized, to deal with triangular 
and quadrilateral elements, in this paper the equations will be 
presented only for quadrilateral elements. 

The integration of the transient term of Eq. (1), for 
example, results in 

 

( ) ( ) ( )
t

BSBS
VdV

t
BS

n
ji

n
ji

ji
svc

∆
−

=
∂

∂
+

∫ ,
1

,
,

/// φφφ                 (53) 

 
where Vi,j is the total volume of control volume i,j, which is 
formed through the assembling of the sub-control volumes 
located near the node i,j. 

The source term in Eq. (1), for example, in the sub-
control volume of Fig. 27, located between points (i,j) and 
(i+1/2,j+1/2), yields  

 

jji
svc

VqqdV 4/1,4/1 ++=∫            (54) 

 
where Vj is the volume of the sub-control volume where the 
integration is performed. 

The integration of divergent term in Eq. (1) yields 
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V
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          (55) 

 
that corresponds to the evaluation at the integration points in 
Fig. 27, located in the center of the sub-control volumes 
surfaces. For the integration point (i+1/2, j-1/4), for example, 
this term is written as 
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and, integrating this expression one gets 
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where the last term disappears in Cartesian grids. Even in such 
particular case, this method results in a nine-point scheme for 
the pressure. The use of nine-point scheme has been 
considered a desirable feature in numerical methods in order 
to reduce grid orientation effect (Yanopsik and McCracken, 
1979) (Ko and Au, 1979) (Shiralkar and Stephenson, 1987). 

We propose a bi-linear variation for pressure, for 
quadrilateral elements in the form 

  
jijijiji PNPNPNPNP ,141,131,2,1 ++++ +++=          (59) 

 
where the operators Ni are the shape functions defined by 

 

( ) ( )( )tstsN ++= 11
4
1,1      

( ) ( )( )tstsN +−= 11
4
1,2  

( ) ( )( )tstsN −−= 11
4
1,3  

( ) ( )( )tstsN −+= 11
4
1,4           (60) 

 
Using a local coordinate for each element, allows each 

element and volume to become independent of other elements 
and volumes. The domain of this local coordinate system (s,t) 
should vary from -1 to +1, and the nodes should be ordered 
from 1 to 4 (in a anticlockwise direction), as shown in Fig. 28  

 
 

 
 

 
Fig. 28 � Local coordinate system   
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If xi and yi are the global coordinates of node i, any 
coordinates x and y of any element internal point can be 
determined by 

 

( ) ( ) i
i

i xtsNtsx ∑
=

=
4

1
,,             (61) 

 
and  

 

( ) ( ) i
i
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4
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Due to the continuity of the shape functions in the 

element, its derivative can be performed as 
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In order to obtain the shape functions derivatives 

xNi ∂∂ /  and yNi ∂∂ / , one uses the chain rule 
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tSolving this system one gets  

 









∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂

∂
s
y

t
N

t
y

s
N

Jx
N iii 1           (67)

  
and  
 









∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂

∂
t
x

s
N

s
s

t
N

Jy
N iii 1           (68) 

 
where J is the Jacobian given by  
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The derivatives of Ni, x and y in relation to s and t can be 

obtained in Cordazzo (2002). 
Therefore the fluxes balance in the volume i,j given in 

Fig. 27 is given by 
 

( ) =
∂
∂=∇∇ ∑∫∫

= Γ

σλλ dpkdVpk
k

i
V

m

i

8

1

.
n

 

 
+−−+= −−++−+ )( 1,4,31,12,114/1,2/1 jijijijiji papapapaλ  

                
+−−++ −−++−+ )( 1,3,31,12,112/1,4/1 jijijijiji pbpbpbpbλ

                 
+−−++ ++++++ )( 1,4,3,121,114/1,2/1 jijijijiji pcpcpcpcλ

                     
+−−++ ++++++ )( 1,4,3,121,112/1,4/1 jijijijiji pdpdpdpdλ  

                        
+−−++ −−+++− )( ,141,13,21,12/1,4/1 jijijijiji pepepepeλ                    

                  
+−−++ −+−++− )( ,141,13,21,14/1,2/1 jijijijiji pfpfpfpfλ  

                    
+−−++ −−−−−− )( ,141,13,21,14/1,2/1 jijijijiji pgpgpgpgλ  

                         
)( ,141,13,21,12/1,4/1 jijijijiji phphphph −−−−−− −−++λ  

       (70) 
 

where ai, bi, ci, di, ei, fi, gi and hi are constants depending only 
on the grid and permeability. 

The mobility evaluation is another important point to be 
dealt with besides the correct flux calculation offered by the 
method. Grid orientation effect reduction is sometimes 
associated with schemes of mobility evaluation (Todd et al., 
1972) (Vinsome and Au, 1979) (Frauenthal and Towler, 
1985). In the following section, the procedure adopted in the 
proposed method to estimate the mobility λ in the integration 
points is discussed. 

 
4.1 � Mobility determination at the integration points 
 
If the mobilities λ are evaluated as a function of the four 

node properties in quadrilateral elements (or three in 
triangular elements), the resulting scheme will be of nine-
point also for mobility. Most of the works in the literature use 
upstream scheme in order to evaluate the mobilities. Even in 
those using non-structured grids, the procedure is similar and 
can be summarized in the form 

 
112 λλ =  if 21 λλ >  

  
212 λλ =  if 12 λλ >   

 
where 12λ  is the mobility evaluated in the integration point 
located between points 1 and 2. Due to the alignment of 
mobility with the gridlines instead of flux direction, this 
procedure can generate excessive numerical diffusion. Several 
results in the literature demonstrate the need of treating more 
accurately the mobility terms. (Yoshiaki, 1982)(Wolcott et al., 
1996). 

In this paper, it is proposed to use the skew method 
already used by Souza (2000) for evaluating the convective 
terms of the Navier-Stokes equations. The method, called 
suds-no (skew upstream difference scheme-node), is a 
simplification of the suds (skew upstream difference scheme) 
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proposed originally by Raw (1985). These schemes identify 
the flux direction and apply the interpolation function in 
alignment with the stream lines. In Fig. 29, the stream line s 
depicts the preferential flux direction. The interpolation 
function applied in this direction warranties that even in flows 
with vortices, the variable is always evaluated in the correct 
position. This is an important feature since we have found 
some works confirming that the grid orientation effect is a 
result of a convective phenomenon (Sonier and Eymard, 
1993). 

For the integration point pi1 in Fig. 29, for example, the 
mobility utilized is that evaluated in point p1, located between 
the nodes 2 and 3.  

In this way, the mobility in integration point pi1 is given 
by 

 

11 ppi λλ =                          (71) 
 

where 
1pλ is the mobility in point p1, which is determined by 

the mobilities calculated with nodes 2 and 3: 
 

32 1
1

λλλ 





 −+=

b
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b
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p           (72) 

 
where a and b are the lengths defined in Fig. 29. When the 
mass flux goes into the sub-control volume, the mobility in 
the integration point pi1 will be estimated by the values at 1 
and 2 nodes when the stream line s intercepts the top surface. 
When the stream line intercepts the bottom surface, the values 
used will be of nodes 3 and 4. Identical formulations should 
be created for the cases where the mass goes out of the sub-
control volume. 

 
 

 
 

Fig. 29 �  Mobility evaluation scheme 
 
 

 
The procedure applied to other integration points and to 

triangular elements is similar. In a three dimensional case, on 
the other hand, the mobility value in the integration point 
involves the four nodes belonging to the surface intercepted 
by the stream line. Fig. 30(a) and (b) depict the procedure 
applied to three dimensional problems, showing a corner sub-
control volume and an internal volume, respectively. In both 

figures, for the sake of exemplification, the mobility is 
evaluated as function of nodes 1, 2, 3 and 4.  
 
 

 

 
(a)                                                                   

 
 

                      
 (b) 

 
Fig. 30 �  Mobilities evaluation scheme, for (a) the corner sub control 

volume, and (b) the internal sub control volumes, in the three-
dimensional case 

 
 

The shape function Ni for 3D (hexahedra) can be found in 
Chung (1981). 

For the vertical direction, however, the same flux 
approximation scheme commonly utilized in most reservoir 
simulators (by two points), will be used here. This scheme 
was already used by Kuwauchi et al. (1996), for example, in 
the simulator VERDI3D, where the equation was integrated in 
the horizontal (areal) plane using Voronoi�s grids. This 
scheme was called pseudo-three-dimensional or 2.5 three-
dimensional. The justification for using this approach is the 
reservoir geometry. 

 
5. Conclusions 
 
In this paper it was discussed important aspects related to 

the type of grids used in petroleum reservoir simulation. The 
transmissibility definition and its proper calculation were 
analyzed in the framework of boundary-fitted method. The 
use of the two-point approximation approach, largely used in 
commercial simulators was also discussed. It clear that only 
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when locally orthogonal grids and in 1D situations the two-
point approach yields exact results. 

Comparisons using a commercial simulator and the 
equation of Sammon were presented, showing that in some 
cases the errors can be significant. The error was plotted 
against geometrical parameters. 

Finally, a new numerical scheme to simulate petroleum 
reservoir was presented. It is based in the EbFVM (Element 
based Finite Volume Method), and it can use mixed triangular 
and quadrilateral elements. The proposed method retains the 
geometric flexibility of the finite-element procedure and 
derives the governing discrete algebraic equations by using a 
conservation balance applied to discrete control volumes laid-
out throughout the domain. In this method the transmissibility 
terms are embodied in the coefficients and are not individually 
identified. It results in a nine-point scheme for both the 
pressure and the mobility, and this is a desired characteristic 
because they reduce the grid orientation effect. 
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Appendix A �  Study of the Transmissibilities by 
   physical  similarity  with  heat transfer   
  problems 
 
 
Transmissibility calculation in mass transfer problems 

depends on both physical properties in the control volume 
interfaces and geometrical factors. We can, therefore, 
establish an analogy between the conductance (U) of heat 
transfer problems and the transmissibility (T) of transport 
problems in porous media. 

The conservation equation of energy, in a steady state, is 
given by 

 
( ) 0=+∇⋅⋅∇ STk                                                      (A1) 

 
where k  represents the conductivity and S is the source term 
related to a possible energy generation. Integrating Eq. (A1) in 
control-volume, and after the application of divergence 
theorem, this equation yields 

 

∑
=

=∆⋅+∆







∂
∂

interfacesi
Pi

Pi
VSS

n
Tk 0r                          (A2) (3.3) 

 
where the term into brackets represents the heat flux by unit of 
area between two adjacent control-volumes, and PiS∆  
represents the interface area between these control-volumes. 

The term  
 

Pi
Pi

S
n
Tk ∆







∂
∂
r            

 

represents the flux that goes through the interface. This term 
can be written as ( )iP TTU − , where U  is the conductance or 
transmissibility between two adjacent blocks P and i, and the 
difference between the temperatures ( )iP TT −  has the 
analogy with the potential difference ( )iP φφ −  for mass 
transfer problems. 

Therefore, Eq. (A2) can be rewritten as 
 

( )∑
=

=∆⋅+−
interfacesi

iPPi VSTTU 0                                   (A3)

 
The great difficult to solve the problems is the exact 

determination of the conductance PiU  between two blocks. 
As already stated, if U is deduced directly from differential 
equation in a conservative form, there is not difficulties since 
the determination, in this way, is done directly from the 
approximate equation. 

 
A1 � Transmissiblity study by 1D problems 

  
Fig. A1 shows a 1D heat transfer problem that will be 

solved analytically and numerically. 
 

 

 
 

Fig. A1� 1D heat transfer problem 
 
 

It is easy to show that the solution of the problem defined 
in Fig. A1 is given by 
 

( ) 200100 +−= xxT                                                     (A4)
 
In order to obtain the numerical solution, the problem was 

discretized using the grid presented in Fig. A2, where the 
dimensions H and L are, in this case, 1 m and 2 m, 
respectively. 

Observe that the grid presents control-volumes in contact 
with more than one volume in the direction x. This 
arrangement permits applying several models of 
transmissibility calculation. 
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Fig. A2 � Discretization of 1D Heat transfer given in Fig. A1 
 

 
Three models to calculate conductance will be presented. 

Model 1D-1 uses the concept of two resistances in series, 
where each one is calculated by the information of its own 
control-volume, as shown in Fig. A3. This model is called 
�electrical resistance model� and it will be used also in 2D 
problems. Model 1D-2, on the other hand, uses the tubular 
area, as shown in Fig. A4, and Model 1D-3 uses all the 
transversal area to flux, as depicted in Fig. A5. After the 
presentation of these models, it is done a comparison between 
the results and the analytical solution. The physical parameter 
(k) in the conductance is constant for all volumes. 

 
Model 1D-1: Electrical resistance model  
 

In this model the resistances are calculated for each 
volume and the total resistance is the sum of these resistances 
in series. The areas used are the same for two volumes, and 
the lengths are indicated in the bottom of the Fig. A3, which 
goes through the volume centre to the center of the contact 
surface. 
 

 
Fig. A3 - Model 1D-1: based on electrical resistances 

 
 

Therefore, the equivalent resistance Re is given by 
 

( )
i

j

i

i
jie yk

x
yk

xRRR
∆⋅⋅

∆
+

∆⋅⋅
∆=+=

2
cos/

2
β

                   (A5) 

 
and the conductance between the volumes i and j, Uij, yields 

 

( )βcos/
21

ji

i

e
ij xx

yk
R

U
∆+∆

∆⋅⋅==           (A6)

  
 

Model 1D-2:  Using the �Tubular� area 
 

According to this model, the area to be used is the tubular 
area, Aij, which is presented in Fig. A4. 

 

 
 

Fig. A4 - Model 1D-2 for conductance calculation: tubular area 
 
 

In this model the conductance is given by 
 

ij

ij
ij

L

Ak
U

⋅
=                                                                 (A7)

 
In a case where the grid is uniformly spaced ( ji xx ∆=∆ ), 

and observing that 
 

( ) 1cos ⋅⋅∆= αiij yA          and       ( )αcos/jij xL ∆=
  
the equation (A7) results 
 

( )
( )

( )α
α
α 2cos

cos/
cos

⋅
∆
∆⋅

=
∆

⋅∆⋅
=

j

i

j

i
ij

x
yk

x
yk

U                (A8)

 
 
Model 1D-3: Using all transversal area to flux 
 

In this case, the only difference from Model 1D-2 is the 
utilization of all transversal area to flux Aij (shown in Fig. A5) 
in the conductance expression. 
 

 
 

Fig. A5 - Model 1D-3 for conductance calculation: using all transversal 
area  
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Assuming also a uniformly spaced grid ( ji xx ∆=∆ ),  
 

( )( ) 1cos/ ⋅∆= αiij yA          and        ( )αcos/jij xL ∆=
  

 
the equation (A7) results 
 

( )
( ) j

i

j

i
ij x

yk
x

ykU
∆
∆⋅=

∆
∆⋅=

α
α

cos/
cos/                                    (A9) ( 35 ) 

 
Comparison of results 
 

In Tab. A1 are compared the temperature values for the 
volumes 0, 1, 2 and 3 shown in Fig. A2, with the analytical 
solution.   

 
 

Tab. A1 � Temperature values obtained from several models 
Solution T0 (°C) T1 (°C) T2 (°C) T3 (°C) 

     
Analytical 150 150 50 50 
Model 1D-1 153.6552 153.5182 50.0809 49.9672 
Model 1D-2 155.5558 155.1527 50.2283 49.8889 
Model 1D-3  150 150 50 50 

 
 

Note that the solution of the third model, i.e. which 
utilized all transversal area in the calculus, is the exact 
solution of this problem.  The second model (tubular area), on 
the other hand, presented the worst errors.  

Model 1D-3 is the model adopted for transmissibility 
calculation in most commercial simulators. 
 

 
A2 � Transmissibility study in 2D problems 

 
In this section we investigate different models to calculate 

transmissibilities in 2D problems. A heat transfer problem that 
has analytical solution is used again. This problem is depicted 
in Fig. A6. In the direction z the plate thickness is 1.  
 

         
 

Fig. A6 - 2D heat transfer problem 
 

 
This problem has an analytical solution which permits an 

accurate evaluation of different methods of transmissibility 
calculation. The analytical solution, obtained by the separation 
of variables method, is given by  
 

( ) ( )( ) ( )
( )∑

∞

=

+
−+−=

1

1
1112),(

n

n

nsenh
xnsenhynsen

n
yxT

π
ππ

π
 

(A10) 
 

For the numerical study, the domain was discretized 
using Cartesian grids with local refinement, such as shown in 
Fig. A7. This type of local refinement originates the condition 
where a control volume�s face has contact with other two 
volumes. So, there are different ways to calculate the 
transmissibility which will be investigated through the use of 
a coarse grid, Fig. A7(a), that has 5x5 volumes and a fine 
grid, Fig. A7(b), that has 21x21 volumes. The columns are 
locally refined with a multiplier factor 2. 
 
 

  
(a) (b) 

 
Fig. A7 � Grids with local refinement utilized for resolution of 2D 

problem: (a) with 5x5 volumes and (b) with 21x21 volumes  
 

 
We will investigate four different models in order to 

determine the transmissibilities: 
 
. Model 2D-1: uses Sammon�s equation (2000) 
. Model 2D-2: uses the correction factor cos² β  
. Model 2D-3: uses the Voronoi grid 
. Model 2D-4: uses the Electrical resistance model 
 
Here, again, all models can be interpreted as an electrical 

resistance model. However, we identify the fourth model as 
the electrical resistance model because it calculates one 
resistance for each control volume unlike the other models, 
which calculate only one resistance for two control volumes. 

 
Model 2D-1: Using Sammon�s equation 
 

This model, already used by Hegre et al. (1986), uses the 
area plotted by a dashed line and the length L shown in Fig. 
A8. It is the scheme used in the commercial simulators that 
calculate the flux by two points. 
 
 

 
 

Fig. A8 � Dimensions used in model 2D-1 
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Both the lenght L and the transversal area A, represented 
by the dashed line in Fig. A8, are given by 

  

βcos
1

22 






 ∆
+

∆
= ji xx

L     and    
βcos
jy

A
∆

=       (A11) 

 
Supposing a uniformly spaced grid ( ji xx ∆=∆ ), the 

conductance expression yields  
 

i

j
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y
kU

∆
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⋅=                                                 (A12) 

 
For the volumes j and k, the conductance is given by 
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Model 2D-2: Using the correction factor cos² β 
 

The angle β is defined here as the angle formed between 
the line that joins the centers of neighbor volumes and the 
horizontal line, as shown in Fig. A9. 
  
 

 
 

Fig. A9 - Dimensions used in model 2D-2 
 
 

In this model, the length L is the same of the model 2D-1, 
and the transversal area, represented by the dashed line in Fig. 
A9, is given by 
 

βcosjyA ∆=         (A14) 
 
Due to the fact that the grid is uniformly spaced, we have 

ji xx ∆=∆ , and therefore the conductance between the 
volumes i and j, Uij, is given by 

 

β2cos
i

j
ij x

y
kU

∆
∆

⋅=         (A15) 

 
For the volumes j and k, the conductance is the same of 

the Model 2D-1. 
 
 
 
 

Model 2D-3: Using Voronoi Grid 
 

In the Voronoi grid (Maliska, 1995), the transversal area 
used is located in the middle point of the cells� centre-to-
centre line. For this grid, the conductance between the 
volumes i and j is the same that was calculated by model 2D-1 
since the areas utilized in these models are identical, as shown 
in Fig. A10. The construction is done in such a way that the 
line joining two grid-points is normal to the control volume�s 
surface. 
  
 

 
 

Fig. A10 - Dimensions used in model 2D-3 
 
 

The only difference between this model and the model 
2D-1 is the conductance between the j and k, where the area 
utilized is Ajk in Fig. A10, which is less than the area utilized 
in previous models, and is given by 

 











−∆=

2
1

2 βtgxA jjk        (A16) 

 
Therefore, the conductance values for this case are 
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The alteration of the area value between the volumes j 

and k resulted � at least in terms of connectivity � the change 
of the grid for the one shown in Fig. A11, which became a 
Voronoi grid. It is important to notice that the alteration of the 
normal flux surface for conductivities Uij and Ujk identifies the 
two-dimensional characteristic of this problem. 
  

 

 
Fig. A11 � Effective grid where are determined the conductances by 

Voronoi method 
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Model 2D-4: Using the electrical resistance 
 

In this model the conductance between two volumes is 
calculated as the harmonic averaging weight of the 
conductances calculated for each neighbor. Note that this 
model is the same used for one-dimensional problem 
presented earlier (Model 1D-1), therefore we will not show 
the conductance expressions again. 

 
 

 
Comparison between the models 
 

In the following sequence we present the results of the 
heat transfer problem defined in Fig. A6 for the four different 
models described here. The differences verified in the coarse 
and fine grids depicted in Fig. A7 are also shown. 

 
In Fig. A12 are plotted the results for the volumes that are 

contained in the vertical line located in x = 0,5. It is compared 
the solution of four models in relation to the analytical 
solution. Note that the Voronoi model (Model 2D-3) showed 
the best solution, while the worst errors are found through the 
resistance model (Modelo 2D-4). Note also that the grid 
refinement did not contribute to increase the accuracy of the 
results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)        

                                                  

 
(b) 

 
Fig. A12 � Comparison between the temperatures obtained through 

different models and the analytical solution for (a) coarse and (b) fine gri




