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5. CONCLUDING REMARKS

The well-established CVFDM-0G's [l] are adequate for the solution of
problems with simple domains in which orthogonal grids may be easily
fitted. These methods are not well-suited for the solution of problems
with complex domain shapes.

Most of the available CVFEM-NOG's are suitable only for mildly complex
domains in which fairly orthogonal and smooth grids can be generated. As
the non-orthogonality of the grid increases, the accuarcy and convergence
characteristics of these methods deteriorate. This difficulty i{s caused by
the Increasing magnitude of the secondary fluxes in the convection-
diffusion equations, the secondary mass fluxes in the continuity equatioms,
and the curvature terms {n the momentum equations.

For problems with truly complex domains, CVFEM's appear to hold the
greatest promise. This 1is especlally true of CVFEM's which employ
unstructured grids. It should be noted, however, that most of the
avallable CVFEM's have been applied only to Incompressible, two-
dimensional, laminar flow problems. Applications to turbulent flows [&4],
and extensions to three-dimensional [&]) and compressible flow problems, are
beginning to appear in the published literature, but these efforts are far
frem complete. Further {mprovements are also required with regard to
interpolations functions, treatment of inflow and outflow boundaries, and
equal-order velocity-pressure formulations.

In conclusion, it is hoped that all control-volume-based numerical
methods for fluid flow and heat transfer will continue to receive open-
minded attention of researchers.
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ABSTRACT

The present paper describes a onpumerical method for the solution of
compressible and/or incompressible fluid flow problems, designed im the
framework of a generalized coordinate system, which renders to the method the
desired geometric flexibility. The coordinate transformation adopted is
suitable for the solution of two-dimensional planar and axisymmetric {lows.
The possibility of handling all speed flows are accomplished by writing
correction equations for velocity and density, making these variables to be
both active in the mass conservation equation. Solutions are reported for the
supersonic flow over a cylinder, a NACA 0012 aerofoil and the SCOUT launch
wvehicle. Whenever possible comparisons are made with the available
experimental or numerical results.

1. INTRODUCT LON

The prediction of the fluld flow motion and the heat transfer rates
involved in many important engineering devices requires the solution of a
coupled set of nonlinear partial differential equations representing
conservation of mass, momentum and energy. General methods for the solution of
this equation system is still a challenging task for the fluid dynamics
theoreticians. Among the several key questions that need to be addressed, in
order te obtain general and computationally efficient methods, iz the
extension of the existing pumerical techniques to solve low Mach number as
well as supersonic flows. An examination of the speclalized literature
demonstrates that the methods have been designed to solve, or compressible, or
incompressible flow problems, and relatively few of them explore the
possibilicy of solving flows in the incompressible limite as well as ctruly
compressible flows. Another evidence is that the methods for compressible
flows have their origin mainly among the researchers at aeroespace
engineering, employing high order finite difference schemes, while the mechods
for Aincompressible flows experienced a strong development among analysts
employing control volume methods. The efficient methods in the former class
follow, in 1its majority, the approach of solving the conservation equations
simultaneously, using ¢ , pu, pv, pw and e, as the dependent variable vector.
Pressure 1s found through the equatiom of state. As formulated, the method
does not work for incompressible flows, wunless artificial compressibility is
introduced.

By 4its turn, the existing segregated methods to handle incompressible
flows are designed to take into account only the coupling between pressure and
velocity. In compressible flowa, where density 1s strongly dependent on
pressure,; this coupling is not important, making the procedure not to work for
this class of problems.

The idea introduced in [l]; as an extension of the methods for
incompressible fluid flows, and in [2]); in the context of the continuos
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Eulerian approach, and further explored inm [3,4], is to force both density and
velocity to be active in the mass conservation equation. This procedure
promotes the adequate coupling between pressure and velocity and pressure and
density. This is accomplished by a special linearization of the mass
conservation relation. A review of these methods and the establishment of a
general structure to fit them is realized in [4], where it is also reported
numerical results for two—dimensional compressible flows in the Cartesian
framework.

In the present paper it is reported a nmumerical method for the solution
of compressible and/or incompressible flows in arbitrary geometries, using the
above cited mass linearization concept. The method 1s applied for the
computation of two-dimensional planar and axisymmetric supersonic flows over
arbitrary bodies. The relevant features of the method are now addressed.
Further details can be found in [5,6].

2.MODEL DESCRIFTION
GOVERNING EQUATIONS. The conservation equations written inm the Cartesian

coordinate or in the cylindrical coordinate system are transformed to the new
£ +n coordinate system retaining its conservative form as

1.3 L3 g .1 &, 3 sl ar§. 4 .34
J E(W} + :i' T{“”W"“ + :? Tniﬁlivﬂ ;_J ';-E[I:E—T Ja 3E *
F 1 z

(1)
i _ph L arj 8. .3 jai 3¢
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wvhere
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a = {ZL}; + {:.!}:'1 g = {!|J§{!|}r| o {:z}ttizjﬂ {2)
Y= e )] 3= {o)gay = GGl

and the expressions for P*  and 5% are given in Table I. The Cartesian
velocity components are kept as dependent variables but there is no
overlapping either of u or v momentum control volumes.

Table I - Expressions for F" and 5°
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In Eqs.(l) and (2) (x,,x,) are the coordinates (x,y) and (z,r), depending
wether the ctransformation 1s from the Cartesian or from the cylindrical
coordinate system. The two situations are obtained with j=0 and {=],
respectively. For 4 equal to 1, u, v and T, plus the state equation in the

form
o= p{ri T] {3}

one recovers the equation set to be solved, in a segregated manner, using a
finite volume method.

ALGEERAIC EQUATIONS. The algebraic equations are obtained through the
integration of Egq.(l) over time and over the control volume centered at P
shown in Fig. 1. To {llustrate, the integratiom of the second term in the left

hand side gives
t+it E_l m
1 3 i
r 3 Etpuiw xjdndfde = {(He) - (A$) fae -
[ l‘;u_ n, 2
where the superscript "o" 1:uli.clt-l-l:hq previous time level. For # = 1 the
integration of Eq.(l) results in

M, -Mp) /e + B -B +8 -H =0 (5)
and for ¢ equal to u, v or T, the integration gives

aydy = Ta 0. + OL#p)*/ac - L[P?] agan + L[5%]acan (6)

wvhere the notation L[ | means the oumerical approximation of the term inside
the brackets.

LINEARIZATION OF THE MASS FLUXES. As discussed previously, there is the need
of having both velocity and density active in the mass conservation egquation
to provide the method with the capability of solving incompressible and
compressible fluid flow problems. This is done through the following
linearization [4]. Let U* and p* estimates of the velocity and density to be

corrected through
p=0 +0' 1)

&
et S0 (8

during the iteration procedure. Consider now the mass flow at the east face of
a continuity control volume given by

#, = (pUxd) an (9)

Substituting Eqs.(7) and (8) in (9) and neglecting the product of the prime
variablessuch that the algebraic equation results linear, one gets

" - (omxdu + oxdus - paxdos) an (10)
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The My, , M, and M, terms are linearized in the same manner.

The final step now is to obtain an equation for pressure. To this end p
and U needs to be related to the pressure correction. This 1issue i1is now
addressed.

PRESSURE EQUATION. Usingan estimate of the pressure and density fields in a
linearized form of the state equation one obtains

" = " + vP (11)
where the ©° coefficient is a function of temperature, tesporarely frozen.
Analegous, let p and P be the correct density and pressure filelds such that

p =cfp + P {12)
From Eqs. (11), and (12} one obtains

o =" + cfpr (13)

where P' = P - PF". To find a relation between the velocity field and the
pressure correction field the momentum equations are used. For the Cartesian
velocity component u, stored at the east face of the continuity control volume
one can write[6]

N i "

e dPL[P“ Jag (14)

HP = u

For a peeudo-velocity, v , that would be stored togheter with u, one has

L - TR
¥p = vp = dyL P'V]aE i
Using the relation between the contravariant and the Cartesian velocity
components one gers
- u
u-u_d{pl_l_ Pept _mi_mi
p = Up - dp (PP B(P +PL-PL PSE}M!MM}} (16)

Remember that U is a contravariant velocity component stored at the
east face of a continuity control wvolume and, as so, it 1s the required
velocity to enter Eg. (5). Similar expressions can be found for | T and
Vg - Substituting Eg. (16) and their analogous and Eq. (12) and their
analogous into the mass conservation equation, an equation for the pressure
correction P' is found, as

T ' P
a Py La,r, +b (17)
The P' fleld obtained is introduced im Eq.(16) and (12) te obtain the new
velocity and density fields which satisfy mass conservatiom.

3.50LUTION PROCEDURE

The following steps summarizes the procedure adopted for the solution of
the equation set.

l. The domain is discretized using a structured boundary-fitted grid.

2. An  estimate field is assumed for all variables. The contravariant U
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and V velocity components are calculated. Recall that the u and v
velocities are not avallable at the same location and so, an
averaging process is necessary.

3. Calculate source terms and coefficients for the momentum equations.
Solve the linear systems to obtain u® and v* Compute U* and V4,

4, Solve Eq.(17) for P'. [Boundary conditions for pressure are
asutomatically incorporated into the equations through a mass balance
performed for the boundary control voluses[7]. Using P' calculace U,
V and p such that mass is conserved. Compute U and V in the faces
where the contravariant wvelocity components do not satisfy mass.
Decode the u and v Cartesian velocity components.

5. Solve for T. Compute the new p field through the state equation.

6. Cycling back to step 2 is necessary to account for nonlinearities and
interequation coupling.

To deal with the pressure-velocity coupling the SIMPLEC[8] method is

used. The linear systems were solved using the MSI[9] procedure.

4.NUMERICAL RESULTS

To check the model several tests were realized and some of them will be
reported here. No efforts were made in order to obtainm the grid independent
golution. Fig. 2 shows the 20x26 grid, the constant Mach lines and the
velocity vector plot for the supersonic flow around a cylinder with a free-
stream Mach number of 4.0. In the same figure it is identified the point were
the sonic line crosses the cylinder surface. The location of this point is in
good agreement with the numerical results reported in [10]. It is seen that
the shock is smearead over few grid lines, since this is a shock-capturing and
not & shock-fitting technique. In this case it is necessary to refine che'
grid near the shock for better capturing the shock. Despite the coarse grid
employed the velocity vector plot clearly shows the location of the shock.

As a second test problem the supersonic flow over the NACA 0012 aercfoil
with a Mach number equal to 2.0 is solved. Fig. 3 shows the B0x3I0 grid
employed and Fig. 4 shows the constant density lines. It can be seen in Fig. 5
that the results agree well with the numerical[ll] results up to half of the
aerofoil chord. Beyond this point the grid is too coarse close to asrofoil
surface and need to be refined.

To finalize the tests, the results for the axisymmetric flow over part of
the SCOUT launch wvehicle is presented. A free-stream Mach number equal to 2.16
was employed with the same ambient conditions used in the wind tunel tests
[12]. The grid used is that of Fig. 6 with few more points close to the
surface. The pressure coefficient is shown in Fig. 7. The agreement between
the numerical and experimental results 1is excellent. The quality of the
results deteriorates considerably if the grid concentration is mot used.

5.CONCLUDING REMARKS

This paper has presented a numerical model for the solution of all speed
flows employing a mass flux linearization which makes both density and
velocity to be active Iin the mass conservation equation. The model is
suitable for the solutions of fluid flow problems defined in arbicrary
geometries and was applied for predicting the supersonic flow over bodies of
arbitrary shape. The transformation employed permits the mechodology to be
applied for planar and axisymmetric flows. The results demonstrated that the
model performs well. Besides the generality of the model and the easiness in



applying boundary conditions, the robustness is, perhaps, the most important
characteristic that should be pointed out. It was not experienced any
convergence problem or stability difficulties during the course of cthe
numerica. experiments, as usually observed when methodologies specially
designed to handle compressible fluid flow problems are employed.
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Fig. 2 - Grid, constant Mach lines and velocity vector plot for the cylinder
in supersonic flow. Free stream Mach number equal to 4.0

Fig. 1 - Grid employed for the

Fig. | - Elemental control volume
NACA 0012 problem



412

Fig. 4 - Constant density lines for Fig.

the HACA 0012 probles
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Fig. 6 = Grid employed for the SCOUT Fig.
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ABSTRACT

This paper presents the formulation of a control volume finite-element
method (CVFEM) for the sclution of steady, two-dimensional, viscous
compressible internal flow problems over a wide range of Mach mumbers. In
this method, the velocity components, tesperature, and pressure, rather than
density, are used as the dependent variables. The proposed formulation uses
adaptive grid techniques to discretize calculation domains with triangular
elements and to facilitate the calculation of accurate flow details in regions
of high gradients. Within each element, the scalar dependent variables are
interpolated with flow-oriented upwind-type interpelation functions, which
include terms to account explicitly for the effect of a source on the
distribution of the scalar variable in an element. These interpolation
functions are used to derive algebralc approximations te Integral conservation
equations for polygonal control wolumes constructed around each node In the
calculation domain. The resulting set of nonlinear coupled algebraic
discrecization equations are solved by an iterative method in which a coupled
equation line solution procedure is used to solve the continuity and msomentum
equations sisultaneocusly along grid lines in the cllculltlonr domain.

1. INTRODUCTION

Compressible fluid flows frequently occur in the aerospace industry. Two
examples of confined compressible flow are the flows through engine inlet
ducts and through passageways between the blades of a gas turbine. Many of
the available numerical methods for compressible flows are for inviscid
fluids. These methods are suitable for many external flows, however, for
internal flows, where boundary layers can grow and merge, the effects of
viscosity are important and must be accounted for in the formulation of the
mmerical technique. Several examples of finite-difference methods for
compressible flows are described in [1], recent examples of work in finite-
volume methods are [2,3,4), and examples of Galerkin FEM's are [5,6].

In this paper, the formulation of a CVFEM for steady, two-dimensional,
viscous compressible flows is presented. This method was developed from
previous equal-order CVFEM's for incompressible fluid flows [7,8,9], and it
combines their advantageous features with a new coupled equation line solver
[10], and an adaptive grid generation technique [11,12]. The remainder of
this paper will give a brief ocutline of the method and present some results.

2.1 Two-Dimensional Forsulstiom

Governing equations. With the cholce of u, v, p, and T as the dependent
variables, the equations governing steady, two-dimensional, viscous compress-
ible fluid flows are the x and y momentum, continuity and energy equations.

Low) + Sgomy = - B (2 L L2, o 82, 2y 1Y)



