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ABSTRACT 

Despite the tremendous growth in computational resources, multiphase flows are far from being simulated with generality and 
accuracy. Keeping track of all interfaces and applying the proper boundary conditions, for example in an industrial gas-liquid flow, 
is not yet foreseeing possible in a near future, if it will, with the numerical background now available. The growth of the use of 
simulation tools for multiphase flows rely, therefore, in creating interface models which tries to represent with more fidelity the 
complex physics happening at the interfaces. This is a research topic which has a very large body of literature available, both on the 
fundamental physics as well as in theoretical analysis of the forces acting at the interfaces. This paper follows this trend, and an 
interfacial tracking method (VOF) is used to simulate the behavior of a rising bubble immersed in a quiescent liquid, as well as the 
buoyancy-driven motion of a viscous drop in a constricted channel. A brief review of the important interfacial forces used in CFD
simulations of multiphase flows are discussed. Numerical results are compared with the available experimental data and the 
interfacial forces calculated from the numerical data are compared with numerical and experimental results. Attention given to the 
transient behavior of the coefficients normally used in CFD simulations. 

1. INTRODUCTION 

Multiphase flows are important in most industrial 
applications including energy conversion, paper 
manufacturing, medical and nuclear applications. Many 
combustion and energy systems involve dilute multiphase 
flow, ranging from droplet sprays in high-speed gas turbine 
combustor flow to bubbly pipe flows of chemical reactors. A 
better understanding of the multiphase interactions can lead to 
increases in performance, reduction in cost and improved 
safety in several important engineering areas [1]. Up to very 
recently, the design of equipments involving multiphase flows 
relied strongly on correlations obtained experimentally. This 
narrows the range of the design variables. Experimental 
studies present a number of difficulties because the probes 
can interfere with the flow and because multiphase systems 
can be optically opaque. Considerable amount of research has 
been done in developing measuring systems based on new 
optical and laser technologies. Moreover, multiphase flows 
are well known for the difficulties in setting up fully 
controlled physical experiments. Fine measurements, like the 
flow inside bubbles, or flows near the bubble surface to 
investigate the existence of local slip flow are not easy to 
realize. But the only way for improving the interface models 
is to set up fine measurements close to the interface. 

Computer simulations, in the other hand, permit to include 
or neglect gravity, account for the effects of the geometrical 
configuration, process modifications and to perform many 
others variations in the physical problem. But, the great 
complexity of scales of the phenomena of practical 
multiphase flows, with different length and time scales 
interacting in a broad range is very difficult to model 
mathematically. One example is the coalescence of drops or 
bubbles where the interfaces are free to deform and break up. 
The forces in such systems are very complex, of different 
types and in the spatial-temporal domain, therefore observed 
over a large range of length scales [2]. Only recently it has 
become possible to experimentally observe the rapid motions 
during the coalescence of two water drops [3]. 

Generally, the averaged description is used to model 
multiphase flow in an industrial level, the so-called Eulerian 
model, where the dispersed phase, like the continuous one, is 
described as a continuous fluid with appropriate closures 
(interfacial momentum transfer between the phases, which 
includes a number of force contributions like viscous drag, 
added mass and lift, among others ). In these models, only the 
averaged local properties are calculated. The properties of 
each individual dispersed particle or bubble, can be modeled 
by the Lagrangian formulation, but unfortunately the amount 
of particles or bubbles that can be tracked is, even today and 
in the near future, very limited, [4]. Other method to describe 
multiphase flow is the interface tracking methods. These 
methods describe both fluids with one set of equations and 
solve another equation for the evolution of the interfaces 
between the fluids.  

The closures required in the Eulerian model have to be 
modeled or provided by empirical data. The problem can be 
to find closures that are as simple as possible, while 
incorporating just enough physics to accomplish this, for a 
given range or phenomena and a specified accuracy. It could 
be provided by direct numerical experiments. This approach 
requires transient numerical experiments at the scale of the 
closure model. One could simulate the motion of one bubble, 
resolving all scales of the flow and then calculate the forces 
acting on the bubble. The same procedure can be used for two 
or three bubbles or for an array of bubbles. The forces are 
then calculated and the relative importance of them could be 
determined and compared with empirical data. This procedure 
is easily controlled, in principle, better than the same 
experiment, providing better results. However, the difficulty 
in realizing fine experiments and also to solve numerically the 
complex multiphase flows, even for few bubbles, hinders the 
development of general closure models to be used with the 
two-fluid approach. 

In this paper we present a brief review of the important 
forces entering the interface models for multiphase flow 
simulation.  We also present some numerical results for the 
buoyancy bubble flow in a straight channel as well as a 
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upward drop flow in a wavy duct. These are preliminary 
results of a research project in which the main goal is to 
obtain more general closure models for CFD calculations. 
This effort will be supported by fine experimental 
measurements.     

 
2. BRIEF REWIEW OF THE ACTING FORCES 

The ability of a multiphase code to predict the behavior of 
gas-liquid or gas-solid flow are limited by the closure models 
used to represent the transfer of quantities between the 
phases. Researchers in this field have been worked to obtain 
rational expressions for the forces acting on bubbles (or 
particles) over the last twenty years [5]. A general transient 
two-phase flow problem can be formulated by using the well-
known two-fluid model, this model, as already pointed-out, 
depends on the availability of closure models for the 
interfacial forces. The generalized drag force per unit volume, 
Mi,d, which is a combination of several interfacial forces is 
given by, (Hibiki and Ishii [6]) 
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whereφ , V, F and M are the volume fraction (or void fraction 
in a gas-liquid two-phase flow), volume of a typical particle, 
force, and force per unit of volume respectively. The 
subscript d indicates dispersed phase, and the superscripts of 
D, V, B, L, W and T mean standard drag, virtual mass, Basset, 
normal lift,  wall lift and turbulent dispersion force of a 
typical single particle, respectively [6]. 

The first term on the right-hand side is the force due to 
viscous and shape effects; the second term is the force 
required to accelerate a quantity of mass of the surrounding 
fluid due to the bubble (or particle) motion. The third term, 
known as the history or Basset force, is the effect of the 
acceleration on the viscous drag and the boundary-layer 
development (Basset) [7], or the relative acceleration between 
the two phases [4]. There is not even full agreement of its 
formulation and when modeling, this force is almost always 
neglected. The fourth term is the lift force normal to the 
relative velocity due to rotation of the fluid (the rotation 
causes pressure difference normal to the flow [8]). The fifth 
term is the wall lift force due to the velocity distribution 
change around particles near a wall, and the last term is the 
turbulent dispersion force due to the concentration gradient 
[9], or the effect of turbulence fluctuations on the effective 
momentum transfer. Because of the very weak relative 
density of bubbles compared to that of the liquid, almost all 
the inertia is contained in the liquid, making inertial-induced 
hydrodynamics forces particularly important in the prediction 
of bubble motion, [5]. Some difficulties are encountered with 
bubbly flows; the shapes of the bubbles can change with the 
local hydrodynamic conditions, adding new degrees of 
freedom to an already complex problem. Following, a brief 
description of the acting forces in a bubble/particle are 
described, trying just to point out the difficulties and 
uncertainties in modeling them, if they are to be used as 
closure models for the interfacial problem in CFD 
simulations.  

In fact, there is a single force acting on the interface 
bubble/liquid, liquid/particle, gas/particle, gas/drop, which is 
the combination of all effects, the physics of the flow. To split 

this force in several types was done for engineering 
convenience only. Therefore, in order to develop new closure 
models for the interfacial force, it seems that more complex 
flows, even with a single bubble/particle, need to be solved, 
generating more general closure models, as done in [30]. 

 
 

Drag Force 

 Drag force is the result of the viscous effect in the 
boundary layer and pressure differences caused by the shape 
of the bubble. Except in low-Reynolds number regime, no 
theory is generally available for determining the viscous drag 
experienced by a bluff body [5]. For free liquid 
contamination, the bubble-liquid interaction seems to escape 
this rule because the viscosity of the gas filling the bubble is 
typically much smaller than the viscosity of the surrounding 
liquid. In this case, there is the possibility of slip along the 
surface of the bubble and the boundary condition imposed at 
the bubble surface should be of a zero-shear-stress rather than 
a no-slip one (Batchelor) [10]. It is not fully determined the 
influence of this boundary condition on the resulting drag 
force as a function of the Reynolds number. 
 For dilute flows, the interphase momentum transfer due to 
shape and viscous drag is modeled based on the drag on a 
single particle in an infinite fluid [4], given by 
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where, CD is the drag coefficient, dp is the average local 
particle or equivalent bubble diameter, gφ is the gas volume 

fraction, gρ and lρ are the gas and liquid densities and Ur is 
the relative local velocity between the fluid and the solid or 
gas phase. 
 The drag coefficient for a single-particle system depends 
not only on the flow regimes but also on the nature of the 
particles; i.e., solid particles, drop or bubbles. Therefore, for a 
multiparticle system these differences are also expected to 
play central roles in determining the drag correlation [11]. At 
sufficiently low particles Reynolds numbers [12], drops and 
bubbles are spherical. High viscosity and/or high surface 
tension keeps fluid particle spherical. In this case, the drag 
coefficient behaves the same as for solid spherical particles.  
 Even in the case of a single particle, CD is a complex 
function of the Reynolds (Re), Eötvös (Eo), and Morton (Mo) 
numbers. The shapes of the bubbles vary with size, 
continuous-flow field, and the physical properties of the 
system. Clift et at. [13], presented correlations for the 
terminal velocity of single bubbles in various size ranges. 
When gas fraction increases, the interaction between bubbles 
becomes more vigorous. Bubbles collide, they coalesce and 
break up and affect their neighboring bubbles. Drag 
formulations for single bubbles cannot be expected to apply 
in this situation, since the bubbles in this case do not move 
altogether independently of each other.  
 Harper [14] observed that bubbles flowing in-line one after 
the other, moved more rapidly than single bubbles of the 
same size, as a result of the interaction of the particles with 
the wake flow, indicating that the correlations to be used in 
CFD simulation for multiple bubbles needs improvements.  
Ishii and Zuber [15] made a careful study of the bubble rise 
velocities in dispersed flow and developed drag formulations 



 
useful for a whole gas fraction range. The actual local gas 
fraction is a variable in the drag formulation. They cover flow 
regimes from the Stokes regime through the distorted particle 
regime and up to the churn turbulent regime. The approach 
based on experimental data is, apparently, the best-justified 
way to adjust the generalized drag formulation for high gas 
concentration. Jakobsen [16] adopted the correlation valid in 
the churn turbulent regime to model the flow structure in the 
turbulent bubble column; it was found that the physical effect 
of this relation was to decrease the relative velocity between 
the liquid and gas with decreasing the gas fraction, contrary to 
experimental measurements reported in the literature. This 
discrepancy clearly indicates that the drag coefficient 
formulations are not so general even for very similar bubbly 
flows. The outcome of this brief review shows that it is a 
challenging task to find correlations for the drag force, such 
that it represents the complex interfacial phenomena 
occurring in multiphase flows when several local flow 
regimes and local bubble sizes are present. The question, 
already raised in this work, is if one should continue trying to 
model the drag, and the other forces, in an individual form, 
since what is required is, in fact, is the global force at the 
interface.  

 
Virtual Mass Force 

 Drag force takes into account the interaction between 
liquid and bubbles in a uniform flow field under non-
accelerating conditions. If, however, the bubbles are 
accelerated relative to the liquid, part of the surrounding 
liquid has to be accelerated as well. This additional force 
contribution is called the added mass force or virtual mass 
force.  
 The concept of virtual mass force can be understood by 
considering the change in kinetic energy of the fluid 
surrounding an accelerating bubble/particle. In potential flow 
the acceleration induces a resisting force on the sphere equal 
to one-half the mass of the displaced fluid times the 
acceleration of the sphere [17]. van Wachem and Almsted [4] 
give a general equation for this force,   
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in which the virtual mass coefficient, CVM, is a function of the 
volume fraction.  
 Maxey and Riley [18] deduced theoretically the virtual 
mass coefficient for spherical rigid particles in potential flow 
with a value of CVM =0.5. Cook and Harlow [19] used a value 
of 0.25 for deformed bubbles in water. Geary and Rice [20] 
suggested 0.69 for spherical bubbles in water. The gas-
fraction dependency of the virtual mass coefficient has been 
reported by [21] and [22], showing a fall in the coefficient 
with increasing gas fraction from about 0.5 at low gas 
fractions to the range 0.01-0.001 at gas fractions around 0.3 
to 0.4. Drew and Lahey [9] derived forces on a sphere in 
inviscid flows. They found the same relationship for the lift 
force as given by Eq. (3). Rivero et al. [23] used a numerical 
procedure to separate the history and virtual mass forces from 
the total unsteady force. Their investigations of oscillatory 
and uniformly accelerating flows established the inviscid 
result of CVM, =0.5 to be valid even at moderate Reynolds 
numbers.  
 As pointed out in [24], in non-uniform flows, the 
separation of the virtual mass force is complicated by the fact 

that the non-uniformity not only induces an inertial force but 
also modifies the viscous drag as a direct consequence of the 
changes in the surface vorticity distribution. They performed 
simulations of straining ambient flows over a solid sphere and 
a spherical bubble at moderate Reynolds number. Based on 
the computed pressure drag, they evaluated the virtual mass 
coefficient for the convective acceleration to be 1/2. For 
instance, in the case of a growing or collapsing, the bubble 
experiences a virtual mass force even if the relative velocity 
does not vary with time [25]. Similarly, when the fluid 
density varies temporally due to rapid compression or 
expansion, the time-derivative of ρ contributes to the virtual 
mass force [26]. This “compressional” force retards the body 
during fluid compression and accelerates it during fluid 
expansion.  
 Geometrically, the virtual mass coefficient is a measure of 
the bluffness of the body, and its value increases as the body 
(or bubble) becomes oblate because it accelerates or displaces 
forward a larger volume of fluid. The virtual mass force plays 
a central role in bubble hydrodynamics because it is weighted 
against fluid density and is typically a factor of (ρ/ρb) ~10-3 
larger than the rate of change of the bubble momentum [5].  
 
Basset Force 

 Basset force or history force is a viscous force due to the 
relative acceleration between the two phases. Most often, this 
force is ignored in continuum modeling, and there is not even 
full agreement of its formulation even for the single bubble 
case [4]. Under steady conditions in a uniform ambient flow, 
the Basset force becomes zero. Drew and Lahey [27] give an 
expression for the history force,  
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where a(r,t) is the acceleration between the phases and the (t-
τ)-1/2 is the generally accepted Basset kernel for short times. 
 
Lift Force 

 Lift force represents the transverse force due to rotational 
strain, velocity gradients, or the presence of walls. A general 
equation for the lift force caused by rotational strain is given 
by  
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and the equation for the lift force caused by velocity gradients 
is given by  
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where CL,r and CL,v are the lift force coefficients associated 
with rotational strain and velocity gradients, respectively. 
From laminar, inviscid flow, the value of 1/2 can be 
determined for the lift force coefficient for rotational strain. In 
literature, a wide range of values can be found for the lift 
force coefficient, as the above equations originated from 
inviscid flow around a single sphere. Tomiayama et al. [29] 
have performed experiments of single bubbles in simple shear 
flows and have found positive and negative values for the lift 



 
force coefficient, depending upon the specific bubble 
characteristics. 
 Dandy and Dwyer [30] computed numerically the three-
dimensional flow around a sphere in shear flow from 
continuity and the Navier-Stokes equations. They examined 
the two contributions to the lateral force, the viscous and the 
pressure contribution, respectively. The viscous contribution 
was always found to be positive. The pressure contribution, 
however, would change sign over the surface of the sphere 
and was found to be opposite to the classical Magnus force 
direction, that is, negative, for most Reynolds numbers and 
shear rates examined. The total lift was always found to be 
positive, however.  
 Bubbles do not always behave as predicted as models for 
rigid spheres. Kariyasaki [31] studied bubbles, drops, and 
particles in linear shear flow experimentally and showed that 
the lift on a deformable particle is opposite to that on a rigid 
sphere. For Reynolds numbers between 0.01 and 8, the drag 
coefficient could be estimated by Stokes law, the fluid 
particles would deform into an airfoil shape.  
 Tomiyama et al. [32] performed both experiments and 
numerical simulations of the lateral migration of a bubble in a 
laminar flow and in a quiescent liquid. They studied the 
effects of the Eötvös number and liquid volumetric flux on 
the lateral motion. They found a lateral force due to the wall 
in the near wall region and a lift force due to circulation 
around the bubble away from the wall. The latter depends 
strongly on the Eötvös number. In quiescent liquid, they 
found that bubbles migrated to the center of the duct and then 
rose straight. They found that increasing the liquid flux in 
either direction enhanced the lateral motion and that the lift 
force was proportional to the liquid flux. For modeling 
purposes, they used a lift force, Eq. (6). They encountered 
negative values for lift force coefficients. The explanation for 
the negative lift force coefficients is the distortion of the 
bubble shape and the subsequent circulation around the 
bubble. They therefore conclude that the nature of the force is 
similar to that of the Magnus force. However, it may just a 
well be classified as a lift force for induced rotation due to 
deformation. Bubbles exhibit very different motion depending 
on whether the bubble deforms or not. A spherical bubble 
experiences a lift to the right, in accordance with theory for 
rigid spheres, whereas the deformable bubble takes the shape 
of an airfoil and moves to the left, for example, experiences a 
negative lift. 
 These findings shows again the difficulty in separating the 
effects in a complex flow, indicating that the determination of 
more general correlations can be useful for simulating 
multiphase flows in which the interfaces are not tracked. 
 
Turbulent Dispersion Force 

 Turbulence, of course, affects the whole flow and, 
therefore, affects the resulting force at the interface. The 
dispersed phase can damp the turbulent energy of the flow by 
means of several effects. The size of the bubbles/droplets, the 
relative velocity between phases and the turbulence intensity 
of the continuous phase, are some of the flow characteristics 
which may affect significantly the resulting force. How to 
take into account these effects on the closure models is the 
motivation for large amount of research available in the 
literature. In order to improve the single-phase models, it can 
be considered that the movement of the bubbles relative to the 
liquid phase creates drag work in the liquid phase in addition 
to liquid shear, Svendsen et al. [33]. An empirical coefficient, 

Ct denotes the fraction of the bubble-induced drag work 
creating additional turbulence production in the liquid phase. 
This parameter generally depends on the bubble size and 
shape, including turbulent kinetic energy on the length (or 
time) scales of the bubbles. There is no general agreement in 
the community about these models. The effect of turbulence 
on interphase momentum transfer is largely unknown. The 
Lopez de Bertodano (1991) model  
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is used successfully for air bubbles in water with the turbulent 
coefficient CT =0.1 to 0.5, however CT is not universal, [12]. 
 Clift et al. [13] notes that turbulence generally increases 
the drag although there is some disagreement among the 
various studies. Soo [34] asserts that the data predominately 
shows a decrease in drag coefficient due turbulence. Crowe et 
al. [35] reviewed a number of studies for turbulence effects 
on particle drag coefficient and noted a wide variety of results 
(increases and decreases) over a large range of Reynolds 
number. Issues, which may be responsible for a lack of 
consistency, include experimental uncertainty, the turbulent 
spectrum variations, particle and wall influences. While there 
are theoretical results, which explain some of these trends for 
bubble rise velocity decrease, [36], no robust empirical 
correction can be recommended at this point. Universal 
models are far from being attained, of course, since all forces, 
which are usually modeled separately, contain influences 
from each other. In the case of turbulence, this phenomenon 
greatly influences the flow, what makes extremely difficult to 
measure its influence over the whole flow and to separate 
these influences over each of the forces, like drag, virtual and 
so on. 
 In this section, we presented some of the available models 
for the interphase momentum transfer in multiphase flows, 
trying to pointing out that much more work is required in 
order to establish reasonable closure models for CFD 
simulation of multiphase flows. Certainly, the use of massive 
numerical simulation for solving complex problems, in which 
the interfaces can be tracked and its local forces calculated, 
will greatly help the development of more general closure 
models. Fine experiments will support the numerical 
calculation of the interfacial force, a quantity which can not 
be experimentally measured. 

 
3. INTERFACE TRACKING METHODS 

When a sharp interface exists, separating two fluids, 
difficulties arise to accurately simulate these flows. It can be 
attributed to the fact that the interface separating the fluids 
needs to be tracked accurately without introducing excessive 
computational smearing, the well known numerical diffusion. 
In the past decade a number of techniques, each with their 
own particular advantages and disadvantages, Annaland et al. 
[37], have been developed to simulate complex two fluid flow 
problems. One of the most well known methods is the volume 
of fluid (VOF) method [38] and [39]. This method uses a 
color function that indicates the fractional amount of fluid 
present (the local volume fraction of one of the phases) at a 
certain position in a determined time. This function is unity in 
computational cells occupied completely by fluid of one of 
the phases, and zero in regions occupied completely by the 
other phase, and a value between these limits in the cells that 
contain a free surface. In VOF algorithm, the color function 
is discontinuous over the interface; however, in the closely 



 
related level-set algorithm, [40] and [41], this function is 
continuous. The advantage of the level-set algorithm is the 
simplicity to compute derivatives of the color function, 
required to calculate the curvature of the surface. However, in 
flow fields with appreciable vorticity, or in cases where the 
interface is significantly deformed, level-set methods suffer 
from loss of mass [4]. The accuracy of VOF methods in 
calculating the curvature of the interface, by determining the 
derivative of the color function, is difficult from a numerical 
point of view.  

Marker particle methods, [42] and [43], in which  fictitious 
particles are placed along the interface and used to track the 
motion of the interface, is a very accurate method, but 
computationally expensive because the interface is 
reconstructed from the location of the particles in each 
iteration. Coalescence and breakup of interfaces is a problem, 
because some method to model these phenomena needs to be 
used.  

Front tracking methods, [44], make use of markers 
connected to a set of points to track the interface, whereas a 
fixed or Eulerian grid is used to solve the Navier-Stokes 
equations. This method is extremely accurate but complex to 
implement because dynamic remeshing of the Lagrangian 
interface mesh is required and mapping of the Lagrangian 
data onto the Eulerian mesh has to be carried out. A proper 
sub-grid model is needed to represent the coalescence and 
break up. Automatic merging of interfaces do not occur in 
front tracking method.  

The interface tracking methods commented above consider 
two separate, incompressible fluid phases. The two phases are 
separated by a reconstructed interface, from some color 
function or another Lagrangian representation of the 
interface, [4]. Now follows the equation systems used in this 
work. 

The governing conservation equations for unsteady, 
incompressible, Newtonian flow are given by the continuity 
equation 
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the Navier-Stokes equation 
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in which ρ is the density of the local fluid, P the local 
pressure, S the surface tension, T the viscous stress tensor, 
and U the velocity field. The velocity field holds both the 
liquid and the gas velocity. Viscosity and density are assumed 
constant in each of the phases, but may vary.  

Standard VOF and level set methods make use of a 
transport equation to determine the evolution of the color 
function 
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whereφ is the color function, representing the liquid or gas 
phase. 

The surface tension, S, is included in Eq. (9) as a body 
force and acts only on the inter-phase boundary surface 
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where γ is the surface tension coefficient and κ is the surface 
curvature given by  
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In this work the color function is made equal to volume 

fraction of surrounding fluid.  
In the next section, we present some numerical results 

using the VOF method described above. The idea is to 
evaluate the model as a tool for the solution of more complex 
flows for the sake of improving the closure methods for 
interfacial forces.  

 
4. NUMERICAL RESULTS 

To apply the VOF method to calculate the interfacial 
forces in a two-phase problem two physical situations 
involving a gas bubble moving in an incompressible quiescent 
liquid is considered. The problems are solved in a 2D 
Cartesian domain, therefore, the shape of the bubbles differs 
considerably from their original forms, since one is 
considering a planar 2D problem. Full 3D and 2D axi-
symmetric solutions are being computed for future 
comparisons.  

The first test is based on experimental results performed by 
[45] for single gas bubbles rising in a liquid. The second test 
problem, the buoyancy-driven viscous drop in constricted 
capillaries [46] has numerical and experimental results for 
comparison.  

The two-dimensional numerical simulations were carried 
out using the CFD code ANSYS CFX release 11TM, which 
use an element-based finite volume method. All simulations 
are performed using high-resolution scheme for space 
discretization and a second order backward difference scheme 
for the time. 
  
Gas Bubble Moving in a Quiescent Liquid  

 Bhaga and Weber [45] studied experimentally the rising 
bubble in a quiescent liquid. They presented experimental 
results for a wide range of flow regimes. In our numerical 
experiment, it is used one of the results presented in [45] to 
compare the shapes, upward velocity and drag correlation. 
The lift and virtual mass forces are calculated and compared 
with the numerical and experimental results. The usual 
dimensionless parameters employed are the Reynolds, Eötvös 
and Morton numbers defined as  
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where Ut is the terminal velocity, γ is the surface tension 
coefficient, de is the equivalent diameter of the bubble, fρ is 
the liquid density and fμ the viscosity of the liquid. It was 
used the same values of the experimental test for these 
numbers, (Re=7.16, Mo=41.1 and Eo=116) in the numerical 
simulations. The physical properties used are shown in Tab. 
1. 
 

Table 1. Physical properties. 
 

fρ  fρ  fμ  Ut γ de 



 
1314 1.185 12.53 26.16 76.9 2.61 
kg/m3 kg/m3 g/cm s cm/s dynes/cm cm 

 
 A Cartesian computational grid (801x801) was used in a 
20x20 cm domain that gives a grid size of 0.025 cm. The time 
step used in the simulations was of the order of 10-4 second. A 
circular bubble was inserted in the bottom of the channel 
filled with liquid at rest and no-slip boundary condition was 
used for the walls. In Fig. 1 the experimental and numerical 
shapes of the bubble at terminal velocity is compared. It can 
be seen that a good qualitative agreement was obtained for the 
general shape of the bubble. 
  

 
    (a)                                       (b) 

   
 

Figure 1. (a) Experimental, from [45] and (b) numerical 
                 obtained in this work. 
  
 Significant for the purpose of this work is to observe that 
the interface is well represented, with almost no smearing, 
what is very common when numerical results using VOF 
methods are calculated. This indicates that grid resolution 
used is fine enough for representing the interfacial shape of 
the bubble. It also important to remember that in transient 
flows, if the interface is not well captured, the errors 
accumulated along time, being difficult to predict the right 
shape of the bubble. 

The rise velocity of the bubble, Vb, is defined as its 
baricentric velocity in the vertical direction, by 
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                                                              (14) 

 
where Ug is the velocity of the gas phase in the vertical 
direction and gφ is the volume fraction of the gas phase. 

Time evolution of the bubble rise velocity is shown in Fig. 
2 with the shapes of the bubble indicated. The bubble reaches 
its terminal velocity at about 0.3 second from the start. 
Experimental terminal velocity for this case is reported as 
0.2616 m/s and the numerical result obtained was 0.243 m/s, 
with a relative error of about seven per cent. Most probably, 
this difference is an effect of the wall boundary condition, 
since the simplifications done in considering a 2D planar flow 
would increase even more this velocity. More tests with a 
wider channel and considering 3D flow need to be conducted 
in order to confirm this.  

 
Figure 2. Evolution of the bubble rise velocity  
                 with its shape for 5 vertical positions.  
 

The magnitude of the local velocity of the gas flow can be 
observed in Figs 3 and 4, where it is shown, respectively, the 
contours of the horizontal and vertical velocity component. 
The symmetry of the flow inside the bubble can be identified 
in these two figures. At the upper region of the bubble, the 
velocity is greater than in the bottom region.  

 

 
 
Figure 3. Contours of gas velocity inside the bubble  
               at the terminal velocity (horizontal component) 
 

 
 
Figure 4. Contours of gas velocity bubble at the terminal 
               velocity (vertical component).  

 



 

 
 

Figure 5. Induced liquid velocity contours  
               at the terminal velocity (horizontal component) 
 

In Figs. 5 and 6 contours of the horizontal and vertical 
components of the induced liquid velocity is shown. The 
figure shows a symmetric field with opposite signal for the x-
component of the liquid velocity, as expected. Near the 
bottom of the domain the contours appears deformed, what 
demonstrates the influence of the boundary of the domain on 
the results. This is not critical, since velocities in that region 
are very small. By their turn, lateral walls do not show this 
behavior. 

 

 
 
Figure 6. Induced liquid velocity contours at terminal 
                 velocity (vertical component) 
 

The drag and lift forces, FD and FL, are the components of 
the fluid force acting on the bubble surface in the transversal 
and in the streamwise direction, and they can be calculated by 
the sum of the pressure and viscous contributions, by 
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The drag and lift coefficients, CD and CL, are defined by  
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in which Fi is the force component acting in the bubble 
surface in the streamwise and transversal directions already 
integrated in the bubble surface, and is the terminal 
velocity calculated numerically. The forces were integrated in 
the surface using the output from the simulator. 

tU

     Virtual mass force, by its turn, appears when the flow is 
accelerating. A balance between buoyancy and virtual mass 
forces gives 
 

( )

dt
dU

g
C

rel
L

gL

L

g
vm

ρ

ρρ
ρ
ρ −

+−=                                                 (17) 

in which the total derivative is defined by 
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In Eq. (18) the baricentric velocities are considered. It was 

observed that, for this case, the spatial derivatives in Eq. (18) 
plays a minor role in the value of the acceleration. Bhaga and 
Weber [45] provided experimental results for the drag 
coefficients. The numerical results of this work for CD and 
CVM are compared in Tab. 2.  

 
Table 2. CD and CVM compared with experimental (CD) and 
the expected value of CVM for the flow over a cylinder  
 

 CD CVM 
Experimental  5.29[45]  

Numerical 5.76 1.35 
 

The numerical result for CD is closer to the experimental 
one considering the simplifications adopted. CL, by its turn, 
was found to be equal to zero, as expected, since the flow is 
symmetric. CVM, by its turn shows considerable discrepancy 
when compared with the value of unity for a 2D cylinder 
[47]. Some new tests are being conducted in order to clarify 
this. 
  
Drop buoyancy-driven motion in a constricted capillary 

 The motion of deformable drops and bubbles through 
constant and variable cross-section channels are of 
fundamental importance as a prototype problem in many 
engineering and scientific applications [46]. 
 In constricted channels, flow is inherently unsteady and 
inertial effects might be important, especially in the case of 
small capillary numbers or severely constricted channels. In 
this work qualitative and quantitative comparisons is realized 
with the results reported in [46]. These authors used a finite 
volume front tracking method to simulate a buoyancy-driven 
motion of drops in constricted channels. Both, numerical and 
experimental results are reported in [46]. 
 The case studied herein is the flow of a drop with radius 
Rd= 2.7 mm in a tube with capillary radius Rc=5.00 mm. The 
non-dimensional drop radius k is defined as the ratio of the 
equivalent spherical drop radius to the average channel radius 
k=(Rd/Rc). The value used for k is 0.55. The amplitude of 
restricted channel used in this work is α=0.28 and the Bond 
number, Bo=12.91. The physical properties are presented in 
Tab. 3. 
 

Table 3. Physical properties. 
 

dropρ  Lρ  dropμ  Lμ  γ H* 

950 1.250 97 450 0.0057 70 
kg/m3 kg/m3 mPa.s mPa.s N/m mm 

*Channel height 



 
 
 The simulation was performed using the VOF method 
described above with a computational grid of 121x901 
volumes (Δy~0.077 mm and Δx~0.097 mm). Figure 7 
illustrate a detail on the throat of the mesh used. As shown in 
the figure, the refinement was concentrated at the central 
region of the channel. 
 

 
 
Figure 7. Mesh detail on the throat of the channel.  
  

A qualitative comparison with the experimental drop 
shape is shown in Fig. 8. As can be seen in this figure, the 
computed drop shape compares well with the experimental 
results, indicating the accuracy of the present simulation and 
the capability of VOF method to represent the interfacial 
shape of the drop. It should be mentioned that the numerical 
result presented in the left side of Fig. 8 was obtained with a 
channel where the amplitude of the wavy wall is a little larger 
than the one used in the experimental work.  

Quantitative comparison with the numerical results, 
reported in [46] for the shape of the drop is shown in Fig 9. 
This figure shows that the VOF method used in this work 
compares very well with the numerical result (front tracking) 
reported for the shape of the drop. 
 
 

 
 

Figure 8. Qualitative comparison between the numerical and 
experimental shapes of the drop before entering the throat. 
Extracted from [46]. 
 
 The rise velocity of the drop was calculated by Eq. 14 and 
the profile shown in Fig. 10. This figure shows the drop 
baricentric velocity and the shapes along the capillary tube. 
There is a sudden acceleration just after the drop is released, 
demonstrating that the inertia effects are very small. 
Following, there is a smooth damping of velocity before the 
throat and after the throat the drop starts to accelerate 
smoothly again. Inside the throat, there is a modification of 
the drop shape, with elongation in the streamwise direction. 

One can note an almost symmetric behavior of the baricentric 
velocity profile before and after the throat. 
 

 
 

Figure 9. Comparison of the drop shape between the 
numerical results after the throat, reported by Olgac et al 
(2006) and the present work.  
  
 Drag force and virtual mass are calculated for this 
numerical result using Eqs. 15 to 18. A comparison is made 
for drag coefficient and presented in Fig. 11, where the time 
evolution of CD is shown. At a low particle Reynolds 
numbers, the drag coefficient for flows past spherical 
particles may be computed by  
 

,
Re
24CD =                                                                            (19) 

 
 For sphere and also for distorted particles the drag 
coefficient can be calculated, using an equivalent diameter, by  
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Figure 10. a) Baricentric velocity of the drop; b) Drop’s path 
and its shapes along the wavy channel. 
                                  
 In Fig 11 it is depicted the unsteady CD coefficient. Three 
different ways in calculating the drag coefficient were used. 
The first one uses Eq. (16) in which the force is calculated 



 
through the calculation of the acceleration and the mass 
involved. The acceleration was calculated using the velocities 
obtained as output, and Eq. (18). The mass was computed 
using the density and the volume of the drop considering it as 
a sphere, even though the flow was considered planar. Eq. 
(20), by its turn, is obtained from a force balance between 
buoyancy and drag valid, therefore, for steady state flow. In 
Fig. 11 Eq. (20) is plotted using as terminal velocity the 
instantaneously velocity of the rising drop. As can be seen, 
Eq (16), also considering the terminal velocity as the 
instantaneous velocity, is in excellent agreement with Eq. 
(20), what demonstrates that the transient flow of the drop 
along the wavy channel behaves as a sequence of several 
steady-state flows. This is a very important finding, since it 
allows the use of the correlation for steady state flow in 
transient regime. 
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Figure 11. Time evolution of the drag coefficient calculated 
for this work for sphere (Eq. 19) and for an ellipsoidal shape 
(Eq. 20).  
  
5. CONCLUSIONS 

This work presented a numerical calculation of forces 
acting on the interface of two fluids considering transient 
effects. The results are preliminary, and are embodied in a 
more general research goal of developing closure models to 
be used in CFD simulations. The main objective is to solved 
complex 3D problems with several effects involved, seeking 
for more general closure models, trying to avoid the modeling 
through the split of the interfacial forces in many types, like 
drag, lift, virtual mass, among others. With this in mind, a 
brief overview of the important interfacial forces was 
described.  

The VOF method was used for solving the two test 
problems, namely the flow of a gas bubble rising in a 
quiescent liquid and the rising drop in a wavy channel. 
Shapes of the bubble in its terminal velocity were compared 
with the experimental results reported in [45]. Drag, lift and 
virtual mass coefficients were calculated by integrating the 
tangential and normal forces on the surface of the bubble. The 
expected virtual mass coefficient for the flow over a cylinder 
does not match with the present results, probably because the 
non-slip boundary condition used on the walls and the initial 
boundary condition affect the flow behavior. The 
consideration of planar flow may have contributed, and this 
result needs to be analyzed in more detail. 

A fundamental problem, the motion of drops in constricted 
channels was also solved. Very good agreement with 
experimental shapes of the drop was obtained. The calculated 

drag coefficient with the drag correlation used for drops with 
non-spherical shape agrees well with numerical results. It was 
demonstrated that the unsteady rising of the drop in the wavy 
channel is equivalent of a sequence of several steady-state 
regimes. This is supported by the fact that the unsteady drag 
agrees very well with the steady drag calculation when the 
steady-state velocity is substituted by the instantaneous 
velocity.     

In general, the VOF method used to simulate realistic 
physical problems gives good results and can be used as a 
tool to calculate the interfacial forces in multiphase flows. 
The accuracy of force calculations will depend on the grid 
and on temporal refinement, as well as on the order of the 
numerical scheme. The numerical results shown were solved 
with a spatial and temporal refinement that resolves much of 
the flow scales.  
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