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ABSTRACT 

This paper presents a comparison of Large Eddy Simulation - LES and Scale Adaptative Simulation - SAS 

versus k-ω SST model, based on U-RANS approach, for the unsteady flow around a square cylinder. 

Although Large and Detached Eddy Simulation approaches have become more and more common for 

external flow problems with detached  regions, depending on Reynolds number, the meshes and time steps 

needed to satisfy LES requirements are unpractical for industrial applications which require, for instance, 

parametrical studies or geometry optimization involving a huge set of runs. With this in mind, the main 

objective of this study is to verify the efficiency of the SAS model and also compare with the traditional less 

CPU demanding models based on URANS, SST, and the LES Dynamic model from Lilly [1]. Results from all 

models have been compared to experimental results provided by the organization [2] of the Challenging 

Problem of the 2012 CFD Society of Canada Annual Conference.  

1. INTRODUCTION 

Numerical simulation of external open flow problems with detached regions has represented a challenging 

issue for engineers and numerical analysts over the last three decades. The main shortcoming has been the 

lack of adequate turbulence models able to deal with large turbulent fluctuations within the detached regions. 

Traditional eddy viscosity or, even Reynolds Stress models, based on Reynolds Averaged Navier-Stokes 

(RANS) equations, are known to be limited for predicting flows that are strongly influenced by vortex-

shedding. In those flows, as pointed out by Lardeau & Leschziner [3], the time scale of the largest turbulent 

eddies is dictated by the period of vortex-shedding. The need to properly capture the periodic flow requires a 

time step much smaller than the shedding period, what means that the time steps required are smaller than the 

time scale of the largest turbulent eddies. This fact is in contradiction with the theoretical assumptions related 

to RANS calculations. A solution for this problem is the usage of Large Eddy Simulation (LES) models in 

which the equations are not averaged but filtrated, calculating the flow structures of the larger turbulent 

eddies and modeling only the smaller incoherent ones, which, a priori, does not depend on the problem 

geometry. It is clear that this approach is intrinsically transient and fine meshes are required in order to ensure 

that all large structures, i.e. those which depend on geometry, are captured by the numerical solution. 

Rodi ([4]) was among the first to point out that URANS simulations of the flow around bluff bodies produce 

inferior results when compared to LES simulations. In general, the shedding motion is under-predicted in 

URANS simulations. The k- model is known for being over-diffusive, in part due to the super-production of 

kinetic energy in stagnation points, a characteristic that, according to Craft ([6]) can be attributed to the 

Boussinesq assumption used to describe the Reynolds stresses. 

Spalart ([5]) noted that the limitations of URANS simulations are particularly felt when 3D simulations of 

typical 2D geometries are performed. Results from Shur et al. ([7]) indicate that URANS simulations of the 



flow around a circular cylinder clearly suppress the wake three-dimensionality, which   means that drag and 

RMS lift coefficients are in general over-predicted. 

On the other side, industrial applications require simulations with less demanding CPU time and usually 

involve several runs, for instance, for geometrical optimization. In this context, the usage of RANS approach 

has been mandatory. Among the several RANS models available in most commercial software the k-ω SST 

([8]) is known to be able to deal with flows with adverse pressure gradient and detached regions, and this the 

model used in this work as reference for RANS approach. The comparison proposed in this paper intends to 

determine how transient RANS models (also called URANS), particularly k-ω SST model, are able to 

compute the flow in these type of problems, at least on mean parameters, as average velocities and 

aerodynamic forces.  

One limitation of the LES approach for open flow problems is it inability to adequately compute the flow in 

boundary layer regions. In fact, this limitation arises not from the model itself, but from the relationship 

between the turbulent scales and smallest grid size. In detached region, largest turbulent scales are considered 

to be of order of main geometry scale, as a diameter or wing cord length. On the other side, within the 

boundary layer,the largest turbulent scales are of order of the boundary layer thickness. Then, the minimum 

mesh size required to capture turbulent structures which satisfy LES criteria could be impracticable within the 

boundary layers. A solution for this problem is introduced by the Scale Adaptive Simulation Models (SAS), 

which basically uses a RANS approach within non-detached region and LES in detached ones. Here, the 

Menter & Egorov ([9]) SST-SAS model is used and compared with LES Dynamic and k-ω SST models. 

2. PROBLEM DESCRIPTION 

The problem consists in the flow computation over a finite square cylinder with the side dimension d (d = 

12.7 mm) and height h (h = 4d = 50.4 mm). The flow around the obstacle has a free stream velocity of 15 m/s 

with a turbulence intensity of approximately 0.8%. Reynolds Number based on the side size (d) and free 

stream velocity (U) is 11000. 

The obstacle is mounted vertically in an open-section wind tunnel (zero streamwise pressure gradient) at a 

distance of 4h from the leading edge of the plate. Figure 1 schematically shows the obstacle, the dimensions 

involved in the problem. The lines where velocity and turbulent stresses will be compared against 

experimental results are also shown in the figure. The computational wind tunnel has 12d of height, 13d of 

width, 200 mm (15.7d) from the obstacle center to the inlet and 20d from the obstacle back face to the outlet. 

 

 
Figure 1 - Problem overview. Lines where profiles were compared are also shown. 

3. COMPUTATIONAL MODEL 

3.1 Governing Equations 

The flow is considered to be incompressible, isothermal, and the governing equation are the mass and 

momentum conservation in their differential form.  

U∞ 

x=0.875d 

x=2d 

x=6d 



Depending on the approach adopted for the turbulence calculation the momentum equation could be 

averaged after the application of Reynolds decomposition on velocity and pressure fields, for the case of 

RANS approach, or filtered, in the case of large or detached eddy simulation approaches. Application of 

Reynolds decomposition and averaging on the momentum equation, according to Pope ([10]), and 

considering an eddy viscosity based model, for the turbulent stress tensor, leads to, 
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where eff =  + T is the effective viscosity and k is the turbulent kinetic energy. This variable and the 

turbulent viscosity, T, are calculated through the k-ω SST model. Here, the variables in capital letters 

represent averages of instantaneous variables (in lowercase). 

On the other side, in models intended to be able to capture large transient turbulent structures, the momentum 

equations are not averaged, but filtered (see, for instance, Layton ([11])) giving, 
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where, introducing a sub-grid turbulent viscosity, one has  
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The sub-grid turbulent viscosity, SGS, takes into account the contribution of the turbulent eddies, whose 

scales are smaller than the mesh size (and therefore not calculated), to the turbulent diffusion. 

The SAS approach consists essentially in a URANS model, in this case k-ω SST, in which the von Karman 

length scale is introduced into the turbulence equations, allowing this model to dynamically adjust to resolved 

structures. This results in a LES-like behavior in the detached regions and RANS prediction in the boundary 

layer regions. 

3.2 Turbulence models  

In the URANS approach, all scales of the turbulent motion are modeled. In eddy-viscosity models like the k-

ω SST model, the Boussinesq assumption is used to represent the Reynolds stresses, as 
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(4) 

Failure in simulating bluff-body flows would be due to the closeness of the time scale of vortex shedding and 

the time scale of the large turbulent eddies, and from the Boussinesq assumption. As pointed out by Craft 

([6]) the linear relation between the Reynolds stresses and the deformation rate results in an over-prediction of 

the turbulence production near stagnation points. The excess of produced kinetic energy is convected to the 

wake, leading to higher levels of eddy viscosity that dissipate the turbulent structures. 

For those reasons, in general LES or hybrid RANS-LES approaches are favored for the simulation of bluff-

body flows. Through the spatial filtering operation performed in LES the large scales of the flow are directly 

solved, and since the large eddies are responsible for the majority of the turbulent kinetic energy spectrum of 

the flow, the smaller eddies can be modeled through very simple approaches like the Smagorinsky model, 

from Smagorinsky ([12]). In this model, the sub-grid stresses are modeled by, 
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(5) 

In this last equation,  is the LES filter width that separates the resolved from the modeled scales, and it is 

related to the mesh spacing. In this work,  was taken as the cubic root of the cell volume. The Smagorinsky 

constant Cs is often considered in the range 0.1-0.25. In the present work the Dynamic Smagorinsky-Lilly 

model was employed and Cs was not taken as a constant, but dynamically evaluated for each cell during the 

time-stepping procedure following a method proposed by Germano et al. ([13]). 



The LES approach has some major shortcomings. One is the need for some type of wall modeling that avoids 

the full solution of the boundary layer through the subgrid model, which would be prohibitively expensive in 

terms of computational cost, once the turbulent scales become smaller when the wall is approached. Other is 

the need for an almost isotropic mesh, with cells having almost the same dimensions in all directions, in order 

that the calculation of the mesh length scale through the cubic root of the cell volume is not hampered by the 

existence of high aspect-ratio cells. Scale-Adaptative Simulation (SAS) is a hybrid RANS-LES technique that 

addresses the issues related to LES through the utilization of a RANS k-ω SST model as a base model. The 

transport equation for the specific dissipation of turbulent kinetic energy () is modified in relation to the 

RANS model through the addiction of a source term related to the Von Karman length scale Lvk, 
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In the last equation  is the Von Karman constant, =0.41. The Von Karman Length Scale is representative of 

the length scale of the larger turbulent structures. It is compared to the RANS length scale L=k1/2/(C1/4. ). 

If L>Lvk, meaning that the RANS length scale is larger than the length scale of the larger resolved eddies, the 

source term in the  equations increases the production of , and so increases the dissipation of kinetic 

energy. This allows the development of smaller turbulent structures. In boundary-layer regions, Lvk reverts to 

the usual mixing-length formula and is given by: 
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In other words, in boundary-layer regions the SAS model behaves as a RANS model, and in detached regions 

the SAS model works as a LES model, capturing the main complex 3D turbulent structures of the flow 

3.3 Computational mesh and numerical solution 

The size of the computational domain was defined in such a way that the boundaries do not interfere in the 

detached wake of the obstacle. A far field considering a width of twelve (12) obstacle diameters (d), a height 

of three times the height of the obstacle, i.e. 12d, and a length of 36.2d as commented in section 2. At the 

sides and ceiling boundaries the usual free slip wall condition was imposed. A run considering opening 

boundaries at these locations is in progress but results are not shown in this paper. At the entrance a normal 

constant velocity equal to U was imposed and an averaged pressure free flow (i.e., all velocity derivatives 

equal to zero) at the outlet region. The LES/SAS full hexahedral mesh was built based on the boundary layer 

thickness. It was estimated and its value divided by 10 to determine the first cell size. Starting from the 

obstacle walls a growth factor of 1.05 was applied in all directions. The boundary layer estimation tickness 

for laminar flow for Re=11,000, resulted in   6e-4 m and the first cell size, therefore, was taken as 6e-5 m. 

This value leads to a maximum y
+
~3, which was considered acceptable. The mesh used for the LES and SAS 

turbulence models is shown in Figure 2. A local refinement using an O-grid was defined near the obstacle, 

avoiding the usual "reflection" of structured meshes, allowing to define a likely constant grid spacing in the 

detached flow region, as recommended in LES models. 

For the case where the unsteady k-ω SST turbulence model has been used, the mesh is almost 4 times coarser, 

due to the fact that this model does not need to capture scales of the flow which are modeled in this 

formulation. The size of the mesh used in LES and SAS approaches was 7.5 million nodes and for the k-ω 

SST model about 2 million nodes. 



  
(a) (b) 

Figure 2 - LES/SAS mesh overview(a). Zoom in the LES/SAS mesh around the obstacle (b) 

Numerical computations were performed using the commercial package ANSYS CFX 13.0. This software is 

based on a discretization of the governing equations using and Element-based Finite Volume Method EbFVM 

([14]) and a coupled approach for solving the pressure-velocity coupling ([15]). In all models, even for RANS 

approach (k- SST model) transient computations were developed, considering the same time step, which 

was set to t = 5e-6. This value led to a maximum Courant number of about 3, for LES Dynamic model. As 

the solution is fully implicit, only one iterative loop within each time step is needed to treat the non-linearity 

of convective terms in momentum equations. A maximum residual in momentum equation solver within each 

time step was set to 1e-3. A high resolution interpolation function ([16]) was used in k-ω SST and a Central 

Differencing Scheme (CDS) was used in LES simulations. For the SAS model a blending between both of 

them was used, where the high resolution scheme is used in the URANS region and CDS is used elsewhere.  

4. RESULTS AND DISCUSSION 

4.1 Averaged  profiles 

Velocity profiles have been time-averaged for all three models and compared with transient averaged 

experimental values provided by the challenge organization of the CFD Challenge 2012. The results were 

compared along lines transversal to the flow direction (contained in a horizontal (y-x) plane located at half the 

height of the obstacle, as shown in Figure 1.  

Dimensionless average velocity profiles for U and V components obtained from the three models are shown 

in Figure 3. 
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Figure 3 - Average velocity profiles, after the obstacle (along lines shown in Figure 1) 

Velocity fluctuation correlations at the wake region are presented in Figure 4 for LES and SAS approaches, 

compared to experimental data. A zoom clipping the LES approach results is included in the u'v' profile for 

line x/d = 0.875 (i.e. very near downstream of the obstacle), in order to distinguish the SAS results. In this 

region, LES model seems to over-predict the experimental values for both u'RMS and u'v'. This could maybe 

due to the lack of an enough refined mesh in this region where turbulent scales are small and the relative mesh 

size to the turbulent scales does not satisfy the LES filtering criterion. On the other side, the SAS model is 

able to deal with this by resolving the scales not captured by the grid through RANS approach.  
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Figure 4 - Velocity fluctuation correlations (along lines shown in Figure 1) 



Farther from the obstacle, both models adequately predict the velocity fluctuation correlations, though SAS 

results are closer to experimental values. 

Another aspect which is currently under investigation is the validity of using free slip boundary conditions at 

the laterals and top of the domain for the dimensions used for the computational domain. As can be seen in 

Figure 3, there is a slight over-prediction of velocities close to where the free slip conditions was applied. 

These differences are more relevant as we go farther from the obstacle, as can be seen in Figure 5. This may 

indicate that the free slip walls were located too near the obstacle, even having 13d as size of the 

computational domain in the y-direction. There is a compromise here in terms of CPU cost; locate free slip 

(more stable) boundaries farther from the obstacle, which implies in a larger mesh if the grid size is 

maintained, or use an outlet condition which could introduce instabilities if vortices go through it. A run 

considering open boundaries at the laterals and top boundaries is ongoing, and results will be reported as soon 

as available. 
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Figure 5 - Averaged U velocity profiles, in a line located at 6d downstream the obstacle 

4.2 Tridimensional Flow Structure  

Grayscale maps of instantaneous and averaged velocity in a plane z=2 are presented in Figure 6. As expected, 

while transient average velocity fields are similar for the three approaches considered in this paper. In all 

cases, the fields were averaged along a period of around 0,08 s for LES and SAS and 0,06 s for SST. 
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Figure 6 - Velocity map for SST, SAS and LES models. Instantaneous and averaged fields 
 

The tridimensional wake structure can be seen in Figure 7, where iso-surfaces of 2 (see, for instance, [17]) 

calculated through the instantaneous and averaged velocity fields are shown for the SAS and LES models. 

The structures for the averaged flow are similar in both models, but some incoherent scales still appear in the 

LES case, indicating that a higher averaging time should be used.  
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Figure 7 - Velocity map for SAS and LES models. Instantaneous and average fields 

5. FINAL REMARKS 

Three turbulence approaches had their results compared to experimental data measurements for a flow around 

a square cylinder. The RANS model, k-ω SST, presented good results when average quantities are compared. 

However, as expected, this turbulence model is not able to capture some important contribution of turbulent 

structures. On the other hand, the LES model presented good comparisons with the measured results in terms 

of average quantities, but over-predicts the results for Reynolds stresses components near the body. The SAS 

turbulence model has shown very good results and seems to be adequate to be used in some industrial 

applications. Approximate CPU time for SST, SAS and LES, when normalized, were, respectively, 1.0, 2.78 

and 2,91. Although the SAS model CPU requirements are of the same order of LES, this is because the same 

time step was used for all models, for the sake of comparisons. Nonetheless, higher time steps than used here, 

like t=5e-6 s for example, led to divergence in LES simulations. Admissible time steps for SAS model were 

higher than these values and, in addition, less refined grid would be necessary near the walls. Thus, in an 

industrial problem, total CPU requirement in SAS model should certainly be much lower than LES approach.  
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